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Abstract

This monograph summarizes and analyzes recent research by the
authors and others to understand, characterize, and model solar
resource variability. This research shows that understanding solar
energy variability requires a definition of the temporal and spatial con-
text for which variability is assessed; and describes a predictable, quan-
tifiable variability-smoothing space–time continuum from a single point
to thousands of kilometers and from seconds to days. Implications for
solar penetration on the power grid and variability mitigation strategies
are discussed.
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1
Introduction

Unlike conventional electrical power generation (e.g., fossil or nuclear),
solar energy is intermittent. The output of a solar power plant is driven
by weather and by the cycle of days and seasons. It varies from zero to
full power outside the control of plant operators.

The intermittency, or better termed, variability, of the solar
resource has two causes. One is precisely predictable and traceable
to the apparent motion of the sun in the sky and the earth’s distance
from the sun. The other is much less predictable and traceable to the
motion of clouds and weather systems.

In order to fully understand the issue and develop intelligent mit-
igation solutions, both solar geometry-induced variability and cloud-
induced variability should be examined in an appropriate spatial and
temporal context. Taking an intuitive example for the temporal con-
text, a single location on a given partly cloudy day will experience a
high degree of variability due to changes in solar geometry and the
passing of clouds. However, solar energy integrated over several days
at that same location will exhibit less variability and variability will
become insignificant as the temporal integration increases to one year
or more (Figure 1.1) — e.g., see Gueymard and Wilcox (2011). Likewise
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Figure 1.1: Comparing the variability of global irradiance time series in a North-
American location, as a function of integration time. The figure includes 1 day’s
worth of one-minute data, 4 days’ worth of hourly data, 26 weeks’ worth of weekly
data, and 16 years’ worth of yearly-integrated data.

Figure 1.2: Comparing the variability of daily global irradiance time series for one
year as a function of the considered footprint.

in the spatial realm, increasing the solar generation footprint from a
single location to a resource dispersed over an entire region or a con-
tinent will reduce intermittency considerably. Increasing this footprint
to the entire planet will eliminate it almost entirely (Figure 1.2).

The focus of this article is placed on understanding, characterizing,
and modeling the interplay between intermittency and the considered
spatial and temporal scales. Implications for the power grid and appro-
priate intermittency mitigation strategies are discussed.



2
Quantifying Intermittency

How is variability quantified? In this article we aim for a broad met-
ric adaptable to a wide range of temporal and spatial scales and that
describes: (1) the physical quantity that varies, (2) the variability time
scale, and (2.1) the time span over which variability is assessed, noting
that condition-specific characterizations of variability may be appro-
priate in particular circumstances such as, e.g., localized variability
induced by cumulus fields [Tomson, 2009].

2.1 Physical quantity

The relevant quantity for energy producers and grid operators is the
power output, p, of a power plant or an ensemble of power plants
at a given point in time. As power output variability reflects the
underlying variability of impinging irradiance, understanding and
quantifying the variability of this irradiance amounts to quantifying
and understanding the variability of p. The fundamental parameters
by which irradiance can be quantified are global horizontal irradiance
(GHI) and direct normal irradiance (DNI). The latter is most relevant
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2.2. Time scale 5

for concentrating technologies, while GHI variability is important for
flat plate technologies.

Irradiance variability embeds both predictable solar-geometry, and
cloud/weather effects. To focus on the latter, it is helpful to use a
normalized quantity that removes solar geometry but conserves cloud-
induced variability. The clearness index, Kt (ratio of GHI to extrater-
restrial irradiance) or the clear sky index, Kt∗ (ratio of GHI to clear
sky GHI) both meet this criterion, although many tend to prefer Kt∗

because it more effectively removes solar geometry effects at lower solar
elevations [e.g., see Perez et al., 1990] and has a more intuitive range.

2.2 Time scale

The above intuitive temporal example suggests that the time period or
its inverse, the frequency, of the selected physical quantity’s time series
is an essential factor. Having defined the physical quantity, e.g., Kt∗,
its variations ∆Kt∗∆t over a given period ∆t are often referred to as the
ramp rates. The time interval can range from a few seconds to hours
and more depending on the concern of the user.

2.3 Time span

A proper measure of variability should include ramp events over a sta-
tistically significant time span. This time span should be a large mul-
tiple of ∆t.

2.4 Nominal variability metric

Nominal variability refers to the variability of the dimensionless clear
sky index. The maximum or mean ∆Kt∗∆t ramp rate over a given time
span has been proposed as such a measure [e.g., Hoff and Perez, 2010].
However most authors prefer using the ramp rate’s variance, or its
square root, the ramp rate standard deviation, over a given time span
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as the metric for variability. We retain this definition of nominal vari-
ability.

Nominal variability = σ(∆Kt∗∆t) =
√

Var[∆Kt∗∆t] (2.1)

Historically, there have been other approaches to quantify variabil-
ity. In earlier work, Skartveit and Olseth [1992] have used the standard
deviation of Kt, σKt, rather than σ∆Kt or σ∆Kt∗ as a measure of
variability. However the latter should be considered a more appropriate
metric because σKt can be driven by one single ramp event — consider
for instance the case of perfectly clear conditions (i.e., no variability)
followed by a one-time change to uniform, heavily overcast conditions
without variability. In this case σKt would be the same as if condi-
tions were highly variable and changing from clear to cloudy at every
time period. On the other hand, σ∆Kt∗ would capture the difference
between the two situations with a low value in the first case and a high
value in the second.

2.5 Power output (absolute) variability

Equation (2.1) describes a nominal dimensionless metric. When dealing
with power generation it is necessary to scale up the nominal metric
and quantify power variability in absolute terms. This is expressed by
Equation (2.2).

Power variability = σ(∆p∆t) =
√

Var[∆p∆t] (2.2)



3
Variability Mitigation — Spatial and Temporal

Effects

When considering a fleet of multiple solar electric installations the
power variability of N plants is given by [Hoff and Perez, 2012a, Perez
and Fthenakis, 2012, Perez and Hoff, 2013]:

Fleet power variability = σ

(
N∑
n=1

∆pn∆t

)
=

√√√√Var
[
N∑
n=1

∆pn∆t

]
(3.1)

where pn represents the power output time series of the nth plant in
the fleet.

In the special case where all the plants in the fleet are identical,
exhibit the same variability σ(∆p∆t), and their power output time
series are uncorrelated, Equation (3.1) simplifies to:

Fleet power variability =
√
N Var[∆p∆t] =

√
Nσ(∆p∆t) (3.2)

In this special case, the relative variability — defined as the ratio of
absolute variability to installed capacity — is given by:

Fleet relative variability =
√
Nσ(∆p∆t)
NPinstalled

(3.3)

where Pinstalled is the installed capacity of each plant. Therefore the
relative variability of a fleet of identical power plants with uncorrelated
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power outputs, but experiencing the same level of individual variability,
equals each individual plant’s relative variability divided by the square
root of the number of plants.

Fleet relative variability = (Single plant relative variability)/
√
N

(3.4)
More generally, Equation (3.5) is applicable to the nominal variability
of a fleet of N locations experiencing identical, but uncorrelated Kt∗

time series.

σFleet
∆t = σ1

∆t√
N

(3.5)

where σFleet
∆t is the fleet’s nominal variability and σ1

∆t is a single loca-
tion’s nominal variability.

This relative variability reduction underlies the well-known spatial
smoothing effect noted by many authors — e.g., Marcos et al. [2012],
Murata et al. [2009], Woyte et al. [2007], Wiemken et al. [2001], and
Vignola [2001].

Nearby locations are highly correlated, experiencing the same ramp
rates at the same time and varying in sync; in this case the fleet exhibits
nearly the same relative variability as the individual systems. Distant
locations’ time series are uncorrelated; hence the fleet’s relative vari-
ability is reduced by

√
N . Therefore the key factor to capture is corre-

lation. A considerable amount of work has been devoted to this issue
in recent years — e.g., Becker et al. [2014], Bing et al. [2012], Badosa
et al. [2013], Frank et al. [2011], Halász and Malachi [2014], Hoff and
Perez [2010], Huang et al. [2014], Jamaly et al. [2012], Kankiewicz et al.
[2011], Kuszamaul et al. [2010], Lave et al. [2013], Lave and Kleissl
[2013], Lorenz et al. [2011], Mazumdar et al. [2013], Norris and Hoff
[2011], Perez et al. [2011,b, 2012], Rowlands et al. [2014], Sengupta
[2011], Stein et al. [2011], Vindel and Polo [2014] — leading to the
assertion that the correlation of ∆Kt∗∆t time series between two loca-
tions is a predictable function of three factors:

• The distance, d, between the two locations,

• The time scale, ∆t,
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• The speed, V , of the variability-inducing clouds/weather sys-
tems.1

The central influence of time, speed, and distance had been iden-
tified by Hoff and Perez [2010] who postulated that a dimensionless
dispersion factor, D, captures the variability relationship between a
single point and a dispersed PV fleet. The dispersion factor is given in
Equation (3.6) for a homogenous fleet of systems, where L represents
the linear dimension of the fleet in the wind direction.

D = L

V∆t (3.6)

They identified three possible fleet configurations (Figure 3.1):

1. A crowded configuration where the number of systems,N , exceeds
the dispersion factor. In this case the relative variability of the
fleet equals the single point’s relative variability divided by D.

2. An optimum configuration where D equals N and where the
fleet’s variability equals the single point’s variability divided
by N .

3. A dispersed configuration where D is larger than N and where the
fleet’s variability asymptotically tends towards the single point’s
variability divided by

√
N as D/N increases.

The dispersion factor model reflects the underlying correlation (or
anti-correlation) existing between any two points within the fleet. Con-
sidering a single pair of stations experiencing the same nominal vari-
ability σ1

∆t, Equation (3.5) may be generalized when the two locations
are partially correlated, leading to:

σpair
∆t =

√
ρ+ 1√

2
σ1

∆t (3.7)

Where σpair
∆t is the nominal variability of the pair and ρ is the correlation

between each time series.
1This velocity is a priori defined as the vector in the direction of the two consid-

ered locations. However, as will be discussed latter, empirical evidence shows that
a mean, local — directionless — velocity, can be an adequate input for assessing
regional station pair correlations.
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Figure 3.1: Relative output variability as a function of the dispersion factor for a
fleet of N identical PV systems experiencing the same individual variability, [Hoff
and Perez, 2010].

The dependence of ρ upon ∆t, d, and V has been inferred from a
growing base of empirical evidence.

Mills and Wiser [2010] analyzed 20-s data from the 32-station ARM
network [Stokes and Schwartz, 1994]. They observed the exponential
decay of station pair correlation as a function of station distance and
noted that the rate of decay was a continuous function of the considered
time scale. Hoff and Perez [2012a,b] used 10 km hourly satellite-derived
irradiances over the continental United States. They observed a similar
asymptotic decay with distance and a predictable dependence of this
decay upon ∆t for time intervals of 1, 2, and 3 h. They also noted that
the rate of decrease of correlation with distance was different for differ-
ent US regions and attributed these differences to prevailing regional
cloud speeds. The analysis of high frequency data (seconds) from a
25-station modular network and confirmed that asymptotic decay with
distance was a strong function of ∆t depending on cloud speed that
they had acquired independently from satellite-derived cloud motion



11

vectors [Perez and Hoff, 2013]. They proposed the following relation-
ship linking distance, time interval, and cloud speed.

ρ = 1
1 + d

(∆t)(V )
(3.8)

Perez et al. [2011] analyzed high-resolution, high-frequency, satellite-
derived irradiances (1 km, 1 min) in climatically distinct regions of
North America and Hawaii to investigate site-pair correlation decay as
a function of distance (0–200 km) time scale (1 min to hourly) and mean
monthly regional cloud speed (Figure 3.2) independently derived from
satellite cloud motion vectors. They proposed an alternate formulation
for ρ given in Equation (3.9):

ρ = e
d ln(0.2)

1.5(∆t)(V ) (3.9)

Lave and Kleissl [2010] and Lave et al. [2011] analyzed high-resolution
distributed irradiance measurements with a variety of statistical tools
such as spectra, coherence spectra, wavelet, correlations, probability
density functions, and spatial and temporal averaging with the objec-
tive of developing a model for simulating the power output of large
power plants from single point measurements. The wavelet variabil-
ity model (WVM) was then proposed in Lave et al. [2013] and it
uses wavelet decomposition of the irradiance signal into different time
scales (duration of shading from clouds or clouds systems), (Figure 3.3)
that were proven to be associated with different amounts of variability
reduction. The associated preliminary spatio-temporal correlation func-
tion dictates the amount of variability reduction and uses a parameter
A that scales the correlation function and that had to be determined
from a sensor network collecting high frequency irradiance data.

ρ = exp(− d

At̄
) (3.10)

Through a virtual cloud model, Lave and Kleissl [2013] inferred that
the parameter A in Equation (3.10) could be approximated to 1/2 V
for station pairs in the direction of the cloud speed.

Figure 3.4 illustrates and contrasts the formulations in Equa-
tions (3.8)–(3.10) for an example with a time scale of one minute and
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Figure 3.2: Site-pair correlation as a function of time period and distance for sample
regions in North America and Hawaii. Mean monthly cloud speed was estimated from
satellite-derived cloud motion vectors computed for each data point [Perez et al.,
2011].
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Figure 3.3: Clear-sky index (blue and green thin lines) and wavelet periodogram
(black and red thick lines) of modes j = 6–11 for one site at UC San Diego (EBU2)
and the average of six sites on August 22, 2009 (reproduced with permission from
Lave et al., 2011).
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Figure 3.4: Comparing correlation decay with distance as formulated in Equa-
tions (3.8)–(3.10) for one-minute data and a cloud speed of 20 km/h.

a cloud speed of 20 km/h. Note that the difference between Equa-
tions (3.8) and (3.9) may be traceable to the fact that V represents a
monthly prevailing cloud speed in the first case and a time-coincident
cloud speed in the second, further noting that Equation (3.8) was
derived empirically without consideration whether pairs where located
along or across wind direction.

Formulations such as Equation (3.8) or (3.9) that define cloud
speed in the direction of a station pair, do not explain the variability
and correlation reduction with distance that is nevertheless observed
when speed is zero — i.e., in cross wind directions — e.g., see Hinkel-
mann [2013], Lonij et al. [2013a,b]. As an attempt to describe cor-
relation anisotropy with respect to cloud speed, Arias-Castro et al.
[2013] applied a kinematic-stochastic model based upon given cloud
cover fraction λn, cloud size r, stream-wise and cross-stream distance,
cloud speed, and time difference. Through dimensional analysis, the
correlation functions were expressed through just four independent
variables: cloud cover fraction, the along-wind and cross-wind distance
normalized by cloud diameter (DalongDcross), and the distance of cloud
motion within the ramp interval ∆t relative to the cloud diameter
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(Dcloud) resulting in Equation (3.11).

ρ =

2e−λn [2−An(
√
D2

along +D2
cross)]

−e−λn [2−An(
√

(Dalong −Dcloud)2 +D2
cross)]

−e−λn [2−An(
√

(Dalong +Dcloud)2 +D2
cross)]

2[e−λn − e−λn [2−An(Dcloud)]] (3.11)

Further, the three key factors governing the correlation decay — time
scale, cloud speed, and distance — are not entirely independent vari-
ables. This was noted by David et al. [2014] when they analyzed station
pair correlations from an irradiance measurement network in the Island
of La Réunion. Whereas exponential formulation in Equations (3.8) and
(3.9) would imply that, for a given cloud speed, a linear relationship
should exist between the distance at a given correlation level and time
scale, with the slope depending on cloud speed [Perez et al., 2011],
they observed that the time scale vs. distance slope tended to dimin-
ish as a distance increased (Figure 3.5). This may be explained by
the observation that the underlying driver of variability (cloud speed)
evolves as a function of the considered spatial and temporal scales. For
the smallest scales, the drivers are cloud substructures. As the spatial
scale increases, the drivers become entire cloud fields, and then entire
weather systems, hence because the speed of these drivers is known to
decrease with scale, the observed relationships are nonlinear.

Figure 3.5: Mean distance to reach a 10% (a) and a 25% (b) correlation threshold
as a function of the time interval of observations in La Reunion (ground and satellite)
[David et al., 2014].



16 Variability Mitigation — Spatial and Temporal Effects

Figure 3.6: Site-pair correlation as a function distance for daily and weekly time
periods. Station pairs are selected to have a predominantly east–west orientation
[Perez and Fthenakis, 2015].

The cloud speed dependence upon time scale becomes fully appar-
ent when considering very large spatio-temporal scales as in Perez and
Fthenakis [2012], Perez et al. [2015] who analyzed millions of possible
pair correlations from the NASA SSE data set [NASA SSE, 2012] for
the entire planet. Figure 3.6 compares the observed exponential cor-
relation decay for ∆T of 1 and 7 days, respectively. It is remarkable
that these results are fully consistent with lower spatio-temporal scales
such as shown in Figure 3.2, plausibly representing an expression of the
underlying self-similar (fractal) nature of clouds and cloud systems at
all scales [Lovejoy, 1982]. As for smaller scales, decorrelation distances
are a function of prevailing cloud speed. Comparing east–west pairs and
north–south pairs in Figure 3.7 indicates that decorrelation distances
are considerably shorter for the latter — a manifestation of the fact
that weather systems tend to move in east–west directions. Finally, as
noted for La Réunion it is also apparent that the cloud system velocity
underlying variability decreases with time scale. For instance, cloud
system speeds inferred from Figure 3.7 using Equation (3.8) would
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Figure 3.7: Impact of prevailing cloud speed on correlation decay for time periods
ranging from 1 to 30 days — contrasting east–west pairs (prevailing direction of
weather systems) and north–south pairs [Perez and Fthenakis, 2015].

indicate that the speed of the east–west weather system motion driver
for daily ∆T is of the order of 20 km/h. For ∆T of 7 days the prevailing
weather system’s speed is of the order of 8 km/h.



4
Application Models and Tools

Understanding the fundamentals of solar resource variability’s spatio-
temporal characteristics has led to the development of tools and
methodologies to address operational questions, in particular to address
the question of how to predict the variability and output ramp-rates
of spatially extended or distributed solar power plants from a limited
number of input data, e.g., a single pyranometer.

4.1 Predicting variability of an extended source from a single
or multiple measurement points

We discuss below, examples of direct application of the spa-
tial/temporal variability correlations discussed earlier. In a following
section, we also provide a detailed description of approaches based on
kriging capable of providing spatially resolved variability from a limited
number of sampling points.

An approach developed by Lave et al. [2013] applies the wavelet
analysis to decompose the irradiance signal into different time scales
(see Figure 3.3) to simulate a power plant’s output given (1) a
spatio-temporal correlation function (e.g., from Equation (3.10)),

18



4.1. Predicting variability of an extended source 19

Figure 4.1: Wavelet variability model (WVM) for modeling reduction in PV power
output variability through geographic smoothing [Lave et al., 2013].

(2) measurements from a single irradiance point sensor, (3) knowl-
edge of the power plant footprint and PV density (Watts of installed
capacity per m2), (4) a time- and location-dependent scaling parame-
ter (parameter A in Equation (3.10)). The Wavelet variability model
(WVM, Figure 4.1) uses these inputs to estimate the variability ratio
over the area of the plant. The simulated power plant may have any
density of PV coverage: it may be distributed generation with low PV
density (i.e., a neighborhood with rooftop PV), centrally located PV as
in a utility-scale power plant with high PV density, or any combination
thereof.

Another operational approach proposed by Hoff and Perez [2012a,b]
is based upon expressing Equation (3.1) as the sum of the covariance
of all possible plant pair combinations in a PV fleet.

σfleet
∆t =

√√√√Var
[
N∑
n=1

∆Pn∆t

]
=

√√√√ N∑
i=1

N∑
j=1

COV(∆P i∆t,∆P
j
∆t) (4.1)

The covariance between any two plants equals the standard devia-
tions of each of the locations times the correlation coefficient between
the two locations (i.e., COV(∆P i∆t,∆P

j
∆t) = σi∆tσ

j
∆tρ

i,j
∆t). Therefore,

the standard deviation of the changes in fleet output can be defined
entirely by the standard deviation of the change in plant output at
each location and the correlation between the locations (obtained from
Equation (3.8)). This method can be applied by deriving nominal
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variability from one, or a small subset of instrumented stations and
assuming that sampled variability is representative of nearby locations.

Kato et al. [2011] proposed a comparable approach to determine
fluctuation of high-penetration photovoltaic power generation systems
dispersed over a large area known as the representative blocks method.
PV is distributed over a number of subgroups each consisting of N
blocks with a given installed capacity and a given variability. The size
of each block is set such that block-to-block correlation is negligible
and a form of Equation (3.3), accounting for different system sizes,
may be applied to aggregate blocks and determined the variability of
the ensemble.

4.2 Inferring spatial variability from gridded data sources

Recent years have seen the development of instruments and models
capable of producing accurate irradiance data on extended spatial
grids. Sky imagers can yield high spatial and temporal resolution data
on footprints approaching 100 km2 [e.g., Nguyen et al., 2016]. Satellite
models [e.g., Perez et al., 2015] can produce gridded data for entire con-
tinents albeit at lower spatial and temporal resolution than sky imagers.
With such massive input, and within their domain of applications, the
problem of applying models to infer spatially extended variability does
not pose itself since the extended variability information is inherent the
gridded data.

However, the methodologies developed to understand variability
have contributed to the enhancement of these instruments and models.
The sky imager functionality has been greatly enhanced — Urquhart
et al. [2014], to produce high frequency (seconds) locally gridded irra-
diance data (∼5 km radius) and cloud speed can be measured as
input to variability models [Fung et al., 2014, Bosch and Kleissl, 2013,
Bosch et al., 2013]. Satellite-to-irradiance models were also enhanced
to produce high-resolution (1 km) data with a timescale approaching
1-minute [Perez et al., 2011]. In addition to producing the experimen-
tal data that led to a better understanding of variability, these new
capabilities, in particular the satellite capability, have also led to a
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Figure 4.2: Comparing one-minute satellite-derived and measured global irradi-
ance.

direct massive approach of PV fleet simulation to directly evaluate and
manage variability issues for time scales in excess of a few minutes
and spatial scales of a few kilometers, by directly simulating any dis-
persed PV fleets from satellite-derived irradiance time series [Clean
Power Research, 2012]. An example of high-resolution, high-frequency
satellite derived irradiance is shown in Figure 4.2.

In addition, combining the high-resolution satellite data capabil-
ity with an understanding and parameterization of underlying vari-
ability and localized spatio-temporal correlations could open the door
to improving short-term solar forecasts under high variability (partly
cloudy) conditions [Zagouras et al., 2015].



5
Spatio-temporal Kriging — A Practical
Approach to Infer Underlying Situational

Space–time Variability

As noted in the first section of this document, the relationship char-
acterizing point-to-point variability correlation is well documented
from a wealth of empirical evidence — effects of time, space, and
cloud/weather motion are well understood and parameterized, delin-
eating a coherent continuum from ∆T s of seconds to several days and
spatial scales ranging from meters to thousands of kilometers.

However, it is sometimes useful to describe time site-specific sit-
uations (decorrelation trends, directional effects traceable to localized
conditions). Kriging offers the means of doing so from a limited number
of measured data points. As mentioned earlier, this method would only
be useful for spatial and temporal scale below what can be achieved
by satellites today — where a deterministic use of gridded data would
be a straightforward way to proceed — noting that both spatial and
temporal resolution of future satellites will be improving.

Ground measurements of solar irradiance are sparse and continuous
high quality measurements require more effort in maintenance and data
quality control than common meteorological state variables [Vignola
et al., 2013]. On the other hand, there exists a need for fully resolved
(time steps on the order of seconds and grid resolution on the order

22
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of 10 m) spatio-temporal irradiance data in applications such as solar
power output in distribution feeder power flow simulations [Nguyen
et al., 2016] and nearest-term forecasting of power output from large
power plants [Lipperheide et al., 2015]. Linear or other common inter-
polation techniques may be appropriate to estimate the average annual
solar resource at unobserved locations, but are inappropriate to create
such temporally resolved irradiance data at unobserved locations. Lin-
ear interpolation, for example, reduces the solar radiation variance at
unobserved locations and does not preserve spatial correlation prop-
erties. Satellite data, on the other hand, provides spatially continuous
data that mitigates the need for spatial interpolation. Nevertheless for
the aforementioned applications its coarse temporal resolution at 15–
30 min and large pixel size (1 km or more) motivates a need for tempo-
ral downscaling or spatial interpolation. However, future satellites such
as GOES-R may “eat away” at the operating space of spatio-temporal
interpolation methods as the envisioned satellite spatial resolution of
500 m and temporal resolution of 5 min will promote the application
of “raw” irradiance data in the aforementioned applications.

Kriging is a technique that can be applied to high fidelity solar
resource modeling at unobserved locations. Kriging was first developed
as a geostatistical interpolation method for spatial statistics [Krige,
1951]. Kriging is essentially a stochastic interpolation method where, in
contrast to deterministic interpolation techniques that use only math-
ematical functions, both analytical and statistical methods are applied
to predict unknown values based on correlation among data points.
Kriging preserves the mean and correlation properties and also esti-
mates the error of the process (kriging variance) which provides a basis
for stochastic simulation [Burrough and McDonnell, 1998]. In many dif-
ferent fields of study kriging methods have been shown to be the best
linear unbiased prediction method superior to deterministic interpola-
tions procedures [Tabios and Salas, 1985, Buytaert et al., 2006, Jarvis
and Stuart, 2001, Chuanyan et al., 2005].

Kriging formulation can be easily generalized to handle applications
where the interpolant changes in time and space as is the case for solar
resource modeling. Various forms of such spatio-temporal kriging are
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used in solar engineering [Rehman and Ghori, 2000, Alsamamra et al.,
2009, Bland and Clayton, 1994, Chen et al., 1994, McKenney et al.,
2008, Merino et al., 2001, Moreno et al., 2011]: simple kriging assumes
that the mean of the process across space and time is known. Otherwise,
ordinary kriging (assuming unknown but constant mean) and universal
kriging (assuming the unknown mean is a known function of co-variates,
e.g., latitude, longitude) can be used. More advanced kriging methods
are also applied for solar radiation forecasting [Alsamamra et al., 2009,
Hengl, 2007, Antonanzas et al., 2015].

One of the important features about the kriging method is its abil-
ity to model as well as forecast solar radiation off-site. In other words,
spatial interpolation or temporal downscaling can be performed. There-
fore, the method can be applied to both ground-measured as well as
satellite-derived solar irradiance data. For spatial interpolation, it is
mostly advantageous for ground data, where available data are typically
unstructured and sparse. However, when it comes to temporal down-
scaling or forecasting, the method would be promising for both satellite
and ground data sets or their combination (as in the so-called co-
kriging method, Dagostino and Zelenka, 1992, Journée and Bertrand,
2010). Gutierrez-Corea et al. [2001] concluded that when the simulation
domain has adequate ground-station density, merging ground-measured
and satellite-derived GHI data will improve the accuracy. On the con-
trary, when station density is low, the best method is estimating GHI
directly from satellite images.

The main input to space–time kriging are space–time covariance
functions. A parametric covariance function must be chosen (and
parameters are calculated empirically, Dale et al., 2010, Dale and Zim-
merman, 1989) based on some simplifications and assumptions includ-
ing stationarity, separability, and isotropy. In a temporal (or spatial)
stationary process, the mean and other statistical properties of solar
radiation is constant over time (or space) and the covariance func-
tion is a function of time lags (or distance between locations) only;
spatio-temporal stationarity of solar radiation is achieved if the pro-
cess is stationary both spatially and temporally. If the covariance func-
tion is separable, spatial solar radiation variation is independent of
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its temporal variation. Gneiting [2002], Gneiting et al. [2007] demon-
strated special requirements for covariance functions and showed that
they cannot be considered separable. In isotropic covariance functions,
the covariance in solar radiation does not depend on direction. This
assumption has been shown to be incorrect as the covariance along the
direction of cloud motion is different than perpendicular to it [Hinkel-
mann, 2013, Perez et al., 2012, Lave and Kleissl, 2013, Arias-Castro
et al., 2013]. Figures 5.1 and 5.2 demonstrate two different methods
(spatial correlation and spatial cross-correlation), which show that this
anisotropy is related to the cloud motion (or weather systems at large
scales as discussed earlier.)

The semivariogram, another important function in the kriging
method, is a function describing the degree of spatio-temporal depen-
dence of solar radiation. Semivariogram is defined as the variance of
the difference between solar radiation at two given points in space–
time coordinates. For an (intrinsically) stationary process, the semivar-
iogram is linearly related to the (parametric) covariance function. The
most common covariance (and semivariogram) functions are in the form

Figure 5.1: (a) Spatial correlation pattern of 1 min averaged kt of data from the
Sacramento Municipal Utility District (SMUD) on January 24, 2012. (b) Spatial cor-
relation between station pairs with the relative time-shift between stations adjusted
to maximize cross-correlation. Correlation are visualized by the color scale as well
as the size of the circle. Correlations are significantly increased for stations that are
separated by a vector that is aligned with the cloud motion vector (here from 315◦).
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Figure 5.2: Correlation patterns of 15 min averaged kt of SMUD grid data for
delays of (a) 0 min, (b) 15 min, (c) 30 min, and (d) 45 min. The blue (red) symbols
represent positive (negative) correlation. The outer diameter corresponds to the size
of the correlation.

of powered exponential, Whittle-Matern, and Cauchy functions. For
example, Gneiting [2002] developed a general stationary nonseparable
covariance function consisting of the powered exponential and Cauchy
functions. Gneiting et al. [2007] also introduced stationary covariance
functions that are not fully isotropic. They considered a physically
motivated directional dependence of the covariance: the anisotropy is
according to velocity vector of the flow, the covariance is a function
of (d − Vt) where d, V , and t represents the space, time, and velocity
vectors, respectively. The motion vector for the Lagrangian reference
frame can be obtained from the time delay of the maximum cross-
correlations between all sites. This “Lagrangian” covariance function
was shown to improve Irish wind forecasting [Gneiting et al., 2007].
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Besides choosing an appropriate covariance function, stationarity
and isotropy are required for accurate Kriging models. Temporal sta-
tionarity (and isotropy) is usually achieved by detrending solar irra-
diance time series usually through the clear sky index or clearness
index [Inman et al., 2013]. Spatial stationarity is usually valid for small
domains while spatial isotropy has to be established in a more sophisti-
cated way according to cloud motion vector. The Lagrangian covariance
function is applied in many studies to account for anisotropy occurred
by cloud motion. Yang et al. [2013, 2014a], on the other hand, achieved
spatial stationarity and isotropy through deformations of the geograph-
ical space based on the two-step method developed by Sampson and
Guttorp [1992].

In general, the application of Lagrangian covariance functions is
sensitive to accurate estimation of the cloud motion vector which is
an emerging research area [Bosch and Kleissl, 2013, Bosch et al., 2013,
Fung et al., 2014]. If a constant velocity vector (e.g., the average of
the velocity field over the 8 hour period as in Inoue et al. — Inoue
et al., 2012, Shinozaki et al., 2014) is assumed, temporal changes in
cloud speed and/or direction degrade the accuracy of Kriging. As an
alternative, the velocity field can be calculated at each time step using
the cross-correlation method [Hamill and Nehrkorn, 1993].

To distinguish between along-wind and cross-wind correlations in
solar radiation, Lonij et al. [2013b] considered a space–time covari-
ance function as a product of a Lagrangian covariance function (in
form of an exponential function) and a purely temporal one (in form
of a powered exponential function). Inoue et al. [2012] considered a
very similar covariance function. However, they considered a more
complex Lagrangian term in the form of the covariance function pro-
posed by Schlather [2010]. Applying the Lagrangian covariance function
improves the Kriging method if a distinct cloud motion pattern exists.
Therefore, considering a Lagrangian covariance function (where space
is always combined with time through the cloud motion vector) along
with a purely temporal one (without purely spatial term) may lead to
results worse than the cases in which purely spatial covariance func-
tions are applied as reported by Inoue et al. [2012]. So, as proposed
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Figure 5.3: Sample of application of purely spatial and spatio-temporal ordinary
kriging for 1 min (a) and 15 min (b) averaged data to model kt at an unobserved
location. Anisotropic spatio-temporal Kriging (adding the Lagrangian covariance
function similar to the one applied by Lonij et al. to the isotropic Gneiting covariance
function as a convex combination) is also added on (b).

by Gneiting et al. [2007], using an isotropic nonseparable space–time
covariance function along with such an appropriate Lagrangian one, as
convex combinations, is a promising idea. Figure 5.3 compares spa-
tial (using a powered exponential covariance functions) and spatio-
temporal Kriging (using isotropic nonseparable Gneiting covariance
function) for 1 min and 5 min averaged kt data.

Although applying an appropriate covariance function and ensur-
ing stationarity and isotropy are key factors in successful applications
of Kriging, reducing the size of the computations (and improving the
results) by quantifying spatial and temporal decorrelation distances
are the main practical challenges in applying the Kriging method for
solar forecasting or interpolation. It has been widely demonstrated that
the correlation decreases in distance and at some point irradiance time
series at two sites will be uncorrelated [Perez et al., 2012, Lave and
Kleissl, 2013, Arias-Castro et al., 2013, Lonij et al., 2013a, Perez and
Fthenakis, 2015, Boudewijn and van Sark, 2013, 2014]. This distance is
called spatial decorrelation distance (or effectiveness range or correla-
tion length). A similar phenomenon is expected to occur in time (tem-
poral decorrelation). Understanding spatial and temporal decorrelation
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is very important which helps to reduce the computational cost since
for a specific point and time only data within the spatial and tem-
poral correlated zone are needed in the Kriging model. This is critical
when the size of the problem (number of sites and/or time steps) is rela-
tively large. For example, Yang et al. [2014a] applied parameter shrink-
age, which applies spatial decorrelation (threshold distance) estimated
using correlations from all directions and showed that it improves fore-
casting. The decorrelation also specifies a limit for interpolation and
downscaling.

Unfortunately research on temporal decorrelation in solar energy
literature is lacking. Yang et al. [2014a] presented circumstantial evi-
dence on temporal decorrelation, hypothesizing that the temporal
decorrelation can be quantified through the standard deviation of time
lag distribution at the threshold distance. It should be noted that,
mathematically, the temporal component in the spatio-temporal pro-
cess is nothing but an additional dimension. Therefore, an inverse prob-
lem can be hypothesized to quantify the temporal decorrelation; i.e., at
each given time lag, all the sites pairs whose maximum cross-correlation
occurred at the given time lag are specified and the distance between
these sites are calculated. The temporal decorrelation can be estimated
by analyzing the standard deviation of the distance between the sites
pairs against the time lags. Another promising method is to estimate
spatial and temporal decorrelation analytically using the applied para-
metric covariance function. Moreover, if a Lagrangian covariance func-
tion exists in the parametric covariance function, the cloud motion
effect can be evaluated by estimating along-wind decorrelation and
decorrelation in other directions (including the cross-wind direction).
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Implications for Power Grid Management

Observations and models describe a space–time continuum underlying
the smoothing effect of solar resource variability: shortest-term variabil-
ity matters for the smallest spatial scales while the minimum relevant
time scale gradually increases with the size of the considered footprint.
This is illustrated in Figure 6.1 where the absolute power variability
of a nominal 1 kW PV power plant (from Equation (2.2)) is plotted as
a function of the resource’s footprint from a single point up to 200 ×
200 km. This particular example is set in a tropical location. However,
trends observed in different climates are quite comparable [Perez et al.,
2013].

The solar generation footprint and time scale should therefore be
the primary concerns of grid operators as they pose different load man-
agement challenges and imply different solutions: for single distribution
systems and large centralized plants, one-minute fluctuations are rele-
vant as they may create voltage control issues. For grid balancing areas
including both fleets of large and small distributed systems, variability
effects below 30 min should be of no concern, while hourly and above
time scales remain relevant.

30
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Figure 6.1: Nominal variability of a 1 kW power plant as a function of its footprint,
Perez and Hoff [2013], Perez et al. [2013].

Likewise variability mitigation solutions should reflect the solar
resource time–space context.

• Up to a few tens of meters — small and medium PV
installations — ramp rates of the order of seconds are rele-
vant — in particular over-irradiance issues, where ramps can
exceed power ratings by up to 50% [Ole-Morten et al., 2014, Yor-
danov et al., 2013] and can create voltage control issues at inter-
connection points. These are generally passively mitigated by the
installations’ hardware that curtails excess spikes. For very large
systems, buffering via capacitors may be warranted.

• From hundreds of meters to a few kilometers — distribution
feeders and large PV plants — minute ramps are relevant, with
impact on distribution system voltage, or transmission system
voltage for large centralized power plants. In the latter case,
active output buffering via capacitor or battery storage could
be considered — some utilities impose maximum allowable one-
minute ramp rate requirements [PREPA — Puerto Rico Energy
Authority, 2013]. However, these should only be warranted for
very large plants or very dense PV fleets where solar production
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is of the order of the base demand energy flow on the local power
grid. For most distributed systems, as long as penetration remains
reasonable, experience shows that the ramping noise induced by
PV systems on distribution grids is less than the background
demand-side ramp noise that utilities have been accustomed to
handle for a long time [Holger et al., 2014b,a]. For very large
dispersed penetration — exceeding local demand — grid man-
agement would be similar to a centralized plant case and would
require buffering.

• From 5 to 20 km — substations, cities — 1 minute variability
vanishes while 10 minute and longer ramps remain. Depending
on penetration, local regulation via storage may be needed.

• For ∼50 km — large cities and dense transmission networks —
15–30 min fluctuations and above are still a concern. Solutions
include contingency stand-by generation, storage or load man-
agement in order to react to ramps and insure balance between
supply and demand — note that these solutions need not be col-
located with PV installations.

• For hundreds of kilometers — regional transmission organiza-
tion’s balancing areas — fluctuations of less than one hour should
not be of concern. Variability mitigation at these scales can be
effectively handled by an optimized basket of active generation,
storage, load management, PV output curtailment, and increased
interconnection bandwidth [Perez, 2015].

For all temporal and spatial scales where active variability mitiga-
tion would be needed, it has been shown that solar forecasting could
substantially reduce mitigation measures and operational cost [Perez
et al., 2013]. For small centralized scales, minutes-ahead forecasts could
be obtained from sky imaging sensors [Yang et al., 2014b], while for a
few kilometers and more, satellite-derived (1–2 h ahead) and numeri-
cal weather prediction forecasts (5+ hours ahead) would be warranted
[Perez et al., 2014].



7
Conclusions

The most important observation reported in this article and assembled
from a large body of work from recent years is the remarkable continu-
ity and self-similarity of the relationships linking spatial footprint and
temporal variability across a very large range of spatial and temporal
scales, from seconds to days and from meters to thousands of kilome-
ters. The long observed smoothing effect implying that variability is
mitigated over space can be appropriately quantified from the knowl-
edge of (1) the temporal scale, (2) the spatial scale, and (3) the motion
of clouds or cloud systems — noting the latter is a second-order effect.

This observation implies that a proper understanding of how solar
energy’s resource variability impacts energy systems requires a defini-
tion of either the temporal or the spatial context for which variability
is assessed. The shortest relevant timescale for which variability should
be assessed is a direct function of the considered solar generation foot-
print, and, to a lesser extent, the speed of the clouds/weather systems
inducing variability. For instance, when developing strategies to miti-
gate the impact of solar variability on electric power grids, defining this
context is critical: indeed, whether one-minute ramps would be relevant
for large centralized plants injecting solar kWh on the grid, focusing on
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these short-term ramps would be useless and unproductive for fleets of
small and medium power plants distributed over a utility service area,
where mitigation occurs naturally.

The understanding of underlying variability structures has led to
development of methodologies and models capable of extrapolating the
resulting variability on arbitrarily defined spatial footprints (e.g., an
ensemble of power plants) from a small sample of point measurements.
These new models fill a gap in temporal and spatial scales, improving
the temporal/spatial resolution of massive gridded solar data resources
where all relevant variability information would be included in the data
themselves without the need for models. The boundary between the
two approaches is of the order of a few minutes on the temporal scale
and a few kilometers on the spatial scale, noting that future satellite-
derived data will push this operational boundary towards finer spatial
and temporal resolutions.

As a final word to this article, and in agreement with the recent
International Energy Agency’s PVPS Task 14 conclusions [Remund
et al., 2015], taking in account the fundamentals of spatial and temporal
scales in the assessing the impact and developing mitigating solutions
to the variability of solar resources injected of the power grid should
be a prerequisite to maximize their effectiveness and minimize costs.
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