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Abstract — This article evaluates the accuracy of solar energy 
forecasts as a function of geographic footprint ranging from a 
single point to regions spanning several hundred km. The forecast 
models that are evaluated include SolarAnywhere®, ECMWF, 
GFS, HRRR, NDFD and satellite-based cloud motion.  The 
forecast time horizons range from one hour ahead to 2 days ahead.  
In addition, a new accuracy metric is introduced: this metric 
quantifies the cost of remedying forecast errors with backup 
generation if the forecasts overpredict, or with curtailment in case 
of underprediction. 

Index Terms — solar forecast, solar resource, backup, 
curtailment, storage. 

I. INTRODUCTION 

Operational solar forecasts are increasingly applied 
regionally to support grid operators to account for the impact of 
dispersed PV generation on their load forecasts [e.g., 1]. 
However, while regional aggregate forecast error reduction has 
been noted (e.g., [2]), in depth quantitative validations have 
typically been site-specific (e.g., [3, 4]). In this article we 
systematically analyze the influence of the solar generation 
footprint on the accuracy of operational solar forecast models.  

Starting from a single point and gradually extending the area 
to a subcontinental region, we analyze the evolution of forecast 
accuracy. In addition to standard model evaluation metrics we 
also pay attention to the logistical accuracy of PV output 
forecasts by estimating the cost of missed forecasts from the 
underlying drivers of energy markets: specifically, we estimate 
the amount and cost of backup energy and capacity as well as 
solar output curtailment needed to make-up for forecast errors, 
hence to provide the equivalent of firm, guaranteed forecasts 
with 100% reliability. 

 
II. METHODOLOGY 

We consider two climatically distinct US regions centered 
respectively on the SURFRAD measurement stations of Desert 
Rock, NV, and Bondville, IL. Around each station we also 
analyze concentric regional footprints ranging from one single 

intermediate resolution satellite model cell (~ 10 x 8 km) to 
110x110 such cells (amounting to a region the size of Texas and 
Oklahoma.) For extended areas, the forecasts are evaluated 
against SolarAnywhere historical data. This extended area 
evaluation benchmark is justified by: (1) the fact that single 
point forecast errors gauged against ground measurements and 
satellite data are comparable (see Figure 1); (2) the satisfactory 
performance of new satellite models compared to ground [5], 
and (3) the observation that satellite model errors diminish 
considerably when gauged against an aggregate of points. 

The forecast models that are analyzed in this article include 
the recently deployed SolarAnywhere V4 [4] as well as its 
constituting underlying forecast models, including NOAA’s 
Global Forecasting System (GFS), High Resolution Rapid 
Refresh (HRRR) and National Digital Forecast Database 
(NDFD), The European Center for Medium Range Weather 
Forecasts (ECMWF), and satellite-derived cloud motion 
vectors forecasts. The time horizons considered for this analysis 
include 1, 3, 24 and 48 hours-ahead. 

Experimental data: Forecasts and benchmarking data span 
nearly one year from June 2015 to April 2016. Validations are 
based on global irradiance (GHI) as a proxy for PV output, 
noting that other factors influencing PV output, temperature 
wind speed and soiling are second order effects, and, to the 
exception of soiling, can be accurately forecasted. 

Validation Metrics: These include standard model validation 
metrics such as mean absolute and root mean square errors 
(MAE and RMSE). In addition, a new set of metrics is 
introduced to quantify the cost of missed forecasts on the basis 
of first operational principles: these metrics quantify the 
amount of backup capacity and backup energy necessary to 
make up for any forecast overestimation through the period 
analyzed. The cost of missed forecast can then be estimated 
from the cost of backup technology, e.g., electrical storage via 
batteries. These operational metrics also quantify the amount of 
solar that must be curtailed in case of forecast underestimation. 
In essence the metrics estimate the cost of providing 100% 



 
accurate solar forecasts from the added hardware and 
operational losses associated with solar production. 

 
III. RESULTS  

Figure 1 compares the relative single point RMSE statistics 
for all models obtained when using ground measurements and 
satellite irradiances as a benchmark. The similarity of these 
statistics warrants the use of satellite-data for regional 
validations. 

 

 
Fig. 1. Comparing single-point mean relative RMSE statistics 
across all time horizons and locations as benchmarked with 
ground measurements and satellite data. 

Table I reports the relative MAE (MAPE) of all forecast 
models at one-hour ahead as a function of footprint. Table II 
shows the same but for 24 hours ahead. Note that MAPEs 
normalized to mean observed GHI and not to a peak irradiance 
of 1000 Wm-2 (i.e., corresponding to rated PV capacity) as is 
current practice in the industry, particularly the wind industry 
[6]. A MAPE peak normalization would reduce the numbers 
presented in Table I and II by well over 50%.  

For both eastern and western locations, the impact of 
footprint on model performance is noteworthy. At one hour 
ahead, MAPEs of less than 5% are achieved by SA-V4 for 
regional footprints of ~ 50x50km for the western location and 
~ 200x200km for the eastern location. Day-ahead MAPEs of 
the order of 10% are achieved for a regional footprint of ~ 
20x20 km in the west. In the eastern US, day-ahead MAPEs of 
15% are achieved for footprints greater than 200X200 km.  

In all instances the SolarAnywhere V4 performance is 
superior to that of its underlying models. This is illustrated in 
Figure 2 were the RMSE of SA V4 is compared to ECMWF 
(the best of the underlying models) as a function of regional 
footprint and time horizon up to 48 hours ahead. 

The scatterplots in Figure 3, 4 qualitatively illustrate the 
influence of footprint on hour ahead and day-ahead model 
performance for Desert Rock. The plots correspond 

respectively to a single location, and to 2o x 2o, 4o x 40, and 7o x 
7o, extended areas, i.e. corresponding to regions roughly 
equivalent to of Massachusetts, New York, and California. 
These scatterplots show that forecast reliability becomes 
remarkable for both hour-ahead and day-ahead horizons as the 

TABLE I 
HOUR-AHEAD MAPE STATISTICS 

 

 

TABLE II 
DAY-AHEAD MAPE STATISTICS 

 

 

Footprint lat x 

long Degrees
SA V4 NDFc GFS ECMWF HRRR CMMM

0.1 x 0.1 12.2% 21.6% 25.7% 23.1% 34.2% 11.3%

0.3 x 0.3 9.5% 20.5% 24.1% 21.3% 32.9% 8.7%

0.5 x 0.5 8.2% 20.0% 23.3% 20.3% 32.0% 7.4%

1 x 1 6.7% 19.0% 22.4% 18.7% 30.6% 5.9%

2 x 2 5.4% 17.5% 20.3% 16.3% 28.1% 4.6%

4 x 4 4.2% 15.0% 17.6% 13.6% 25.4% 3.7%

7 x 7 3.4% 12.7% 15.5% 11.3% 23.5% 3.1%

11 x 11 2.9% 10.8% 13.9% 9.8% 21.8% 2.8%

Footprint lat x 

long Degrees
SA V4 NDFc GFS ECMWF HRRR CMMM

0.1 x 0.1 8.4% 13.5% 10.6% 11.0% 20.8% 8.2%

0.3 x 0.3 6.0% 12.2% 9.4% 9.2% 20.3% 6.1%

0.5 x 0.5 5.1% 12.0% 8.8% 8.4% 19.9% 5.2%

1 x 1 4.2% 12.1% 7.7% 7.5% 19.3% 4.3%

2 x 2 3.4% 11.4% 7.0% 6.5% 17.3% 3.7%

4 x 4 2.7% 10.6% 6.3% 5.6% 14.5% 3.3%

7 x 7 2.5% 9.2% 6.5% 5.5% 12.3% 3.2%

11 x 11 2.3% 7.2% 6.6% 5.0% 10.5% 3.1%

BONDVILLE

DESERT ROCK

Footprint lat x 

long degrees
SA V4 NDFD GFS ECMWF HRRR CMMM

0.1 x 0.1 21.2% 23.3% 28.2% 24.7% NA NA

0.3 x 0.3 19.4% 22.1% 26.7% 22.8% NA NA

0.5 x 0.5 18.6% 21.6% 26.0% 22.0% NA NA

1 x 1 17.2% 20.7% 24.9% 20.5% NA NA

2 x 2 15.2% 19.1% 23.0% 18.3% NA NA

4 x 4 12.5% 16.7% 19.9% 15.5% NA NA

7 x 7 10.0% 13.9% 16.8% 12.6% NA NA

11 x 11 8.1% 10.9% 14.6% 10.5% NA NA

Footprint lat x 

long degrees
SA V4 NDFD GFS ECMWF HRRR CMMM

0.1 x 0.1 10.8% 13.9% 10.8% 11.5% NA NA

0.3 x 0.3 8.9% 12.7% 9.8% 9.7% NA NA

0.5 x 0.5 8.1% 12.5% 9.2% 8.9% NA NA

1 x 1 7.2% 12.6% 8.3% 7.9% NA NA

2 x 2 6.3% 12.0% 7.6% 7.1% NA NA

4 x 4 5.3% 11.0% 6.8% 6.1% NA NA

7 x 7 4.9% 9.3% 7.1% 5.9% NA NA

11 x 11 4.7% 7.6% 7.3% 5.5% NA NA

BONDVILLE

DESERT ROCK



 
considered balancing area increases. The scatterplots in Figure 
5 qualitatively contrast the performance of SA V4 at the one-
hour ahead horizon compared to HRRR and the two global 
NWP models, GFS and ECMWF, for a 4o x 40 region.  

 

 
Fig. 2. Comparing the performance of SA-V4 (top) and 
ECMWF (bottom) in Bondville vs. time horizon (1, 3, 24 and 
48 hours ahead) and footprint (point, 2ox2o and 7ox7o). 

The new operational/financial metrics are reported in Table 
III. These include: 

 The percentage of PV output that must be curtailed and, 
vice versa, supplied via backup generation to make up 
for any SA-V4 forecast deficit or overestimation, i.e., to 
render the forecasts 100% accurate. 

 The cost of battery storage that would be sufficient to 
absorb excess production and provide backup 
generation if storage was applied to absorb excess and 
provide backup generation – assuming $300/kWh for 
battery CAPEX and 80% roundtrip efficiency. 

Results show that offering operational forecast guaranties at 
the regional level could be achieved with either a minor amount 
of PV output curtailment/backup (e.g., less than 3% in the 
Western US for day-ahead guaranty for a balancing area of 
~60K square miles) or the operation of storage systems 
amounting to a small fraction of PV CAPEX. 

Achieving forecast guaranties with any of the underlying 
NWP models could also be achieved, but the 
curtailment/backup and/or battery cost premium relative to SA-
V4 would be consequential as shown in Table IV 
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TABLE IV 

BATTERY COST PREMIUM AND CURTAILMENT 
REQUIREMENTS INCREASE WHEN USING OTHER 

FORECASTS INSTEAD OF SA-V4 TO DELIVER 100% 
FORECAST ACCURACY 

 

 

point 2 x 2 4 x 4  7 X 7

% curtailed & backup 4.0% 1.6% 1.2% 1.0%

Battery cost per PV kW  328$     174$     122$     76$      

% curtailed & backup 5.8% 3.3% 2.8% 2.3%

Battery cost per PV kW  560$     523$     463$     224$    

% curtailed & backup 5.9% 2.7% 2.1% 1.5%

Battery cost per PV kW  349$     128$     109$     73$      

% curtailed & backup 11.5% 8.4% 7.0% 4.5%

Battery cost per PV kW  753$     715$     533$     334$    

footprint (degrees)

Western US Hour Ahead Forecast Guaranty

Western US Day Ahead Forecast Guaranty

Eastern US Hour Ahead Forecast Guaranty
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Fig. 3.  Hour Ahead Forecast vs. Actual GHI in the Southwestern US as a function of balancing area footprint 



 

 

Fig. 4.  Day Ahead Forecast vs. Actual GHI in the Southwestern US as a function of balancing area footprint 



 

 

Fig. 5.  Comparing Hour Ahead Forecasts in the eastern US for a 4ox4o footprint. 

 


