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SUMMARY

New methods for the treatment of solar radiative transfer through overlapping and inhomogeneous clouds
are presented. First, a new approach to cloud overlap is shown. For the adjacent cloud blocks, the traditional
maximum overlap can be relaxed to a mixture of maximum and random overlap treatments for layers that are
adjacent but not fully correlated. Second, a new radiative-transfer algorithm has been developed to deal with these
various cloud overlap circumstances that is simple enough for implementation in a general-circulation model
(GCM). When compared to appropriate benchmark calculations, we find that this new method can produce
accurate results in heating rates and fluxes with relative errors generally less than 8%. Third, a new and very
simple approach to treating radiative transfer through a cloud with horizontal subgrid-scale inhomogeneities is
developed. This approach uses an optical-depth scaling technique to represent the subgrid-scale inhomogeneity.
Finally, by combining all of the above elements, we provide a new algorithm for the combined treatment of
cloud overlap and inhomogeneity and we show that it yields very reasonable accuracies for heating rates and
fluxes. Through benchmark comparisons, we show that this new algorithm provides significant improvement over
existing schemes in GCMs.
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1. INTRODUCTION

Clouds greatly influence the radiative balance of the atmosphere (Liou 1986) and
are integral in climate prediction (IPCC 1996, 2001; Morcrette and Jakob 2000). Yet,
despite recent advances, their description in large-scale models is still crude (Jakob
2002).

The treatment of cloud overlap in general-circulation models (GCMs) is currently
dominated by the random and maximum-random overlap techniques that were devel-
oped in previous decades (Manabe and Strickler 1964; Geleyn and Hollingsworth 1979;
Jakob and Klein 1999; and others). A rigorous implementation of solar radiative transfer
involving cloud overlap is difficult (Stubenrauch et al. 1997; Collins 2001; Räisänen
et al. 2004) and can quickly exceed computational limits.

Historically, cloud overlap has been treated with the cloud matrix method which is
used to handle the maximum-random overlap. Recently, however, the traditional concept
of maximum-random overlap has been challenged by cloud-resolving model studies
(e.g. Barker et al. 1999) and observations (Hogan and Illingworth 2000, 2003; Mace
and Benson-Troth 2002). However, maximum-random overlap assumption aside, the
cloud matrix method for handling the solar radiative transfer through a cloud system
has never been rigorously validated. It is shown in the following sections that the cloud
matrix method can give rise to significant errors.

An alternate method is the multi-column approach (Stubenrauch et al. 1997; Collins
2001; Räisänen et al. 2004), in which cloud fraction for each column is either 0 or 1, so
treatment of cloud overlap is trivial and the results should be accurate. However, since
calculations are performed individually for each column, the computational time can be
a problem for the multi-column approach. In this paper a quasi multi-column approach
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is proposed. The scheme has accuracy nearly as high as the multi-column scheme but it
is more computationally efficient.

It is important that GCMs account not only for overlap but also for cloud inhomo-
geneity. A number of papers have been put forth to address this (Barker 1996; Oreopou-
los and Barker 1999; Los and Duynkerke 2001; Li and Barker 2002; Kato 2003). We
have found that a simple scaling of the cloud optical depth can properly account for the
effects of subgrid-scale inhomogeneities. We find that the algorithm developed captures
the details of cloud subgrid-scale variability sufficiently well.

2. CLOUD MATRIX SCHEME

The results of the new algorithm outlined in section 3 will be contrasted with the
cloud matrix scheme. Here we briefly outline the cloud matrix scheme (Harshvardhan
et al. 1987; Liang and Wang 1997; Räisänen 1998; Li 2000; Bergman and Rasch 2002;
and others) in order to highlight the physics which will be considered in our new scheme.

In the following we set level 1 as the top of the atmosphere (TAO) and level N
as the surface. Layer i is between level i and level i + 1. The cloud matrix elements
Cl,m give the total vertically projected cloud fraction between any two levels l and m.
Furthermore, ci = Ci,i+1 is the cloud amount in layer i, C1,N is total cloud fraction for
the entire GCM column, and we set Ci,i = 0. We define a cloud layer as occupying one
model layer and a cloud block as occupying one or more than one adjacent model layers.
Different cloud blocks are separated by clear layers.

As shown in appendix A, two calculation paths for reflection and transmission are
required to obtain the upward and downward fluxes at each model level k for solar
radiative transfer. One path is from the TOA downward to the level k, and the other path
is from the surface upward to the considered level k. Consequently, two sets of matrices
are needed: one representing cloud overlap looking from the TOA downward to the level
k, C1,k, and the other looking upward from surface to the considered level k, CN,k.

The radiative-transfer algorithm for the cloud matrix scheme used here is based on
Bergman and Rasch (2002). The following radiative functions are determined for each
level k, separately for the clear and cloudy part of the GCM column: the downward
transmittance of layers above k for direct solar radiation, T1,k(µ0), µ0 being the cosine
of the solar zenith angle; the reflectance of layers above k for diffuse radiation, R1,k;
and the reflectance of layers below k for direct solar radiation, RN,k(µ0) and for diffuse
radiation, RN,k. In what follows, superscripts c and o represent the clear sky and cloudy
sky, respectively. The clear-sky reflection and transmission can be calculated following
appendix A. The cloudy-sky part of the computations is, however, more complicated.
Three contributions have to be accounted for in the computation of the cloud-weighted
mean reflectance and transmittance: the case with clear air above and cloudiness below
level k, the case with cloudiness above level k and clear air below, and the case with
cloudiness both above and below level k.

To illustrate this, consider the schematic shown in Fig. 1. At level k + 1, the
downward direct transmission is determined from three regions I, II and III (see
Fig. 1(b)),

T o
1,k+1(µ0) = {(C1,k+1 − ck)T

o;c
1,k+1(µ0) + (C1,k − C1,k+1 + ck)T

o;o
1,k+1(µ0)

+ (C1,k+1 − C1,k)T
c;o

1,k+1(µ0)}/C1,k+1,
(1)

where the first variable in the superscripts of T
c;o

1,k+1(µ0), T
o;c
1,k+1(µ0) and T

o;o
1,k+1(µ0)

represents the clear or cloudy portion for T1,k(µ0) at the previous level k, and the second
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Figure 1. (a) A schematic of maximum overlap (left), relaxed maximum overlap (middle) and the corresponding
cloud matrix element Ci,i+2 (right) for adjacent cloud layers i and i + 1. (b) A schematic of relaxed maximum-
random overlap. The cloud in layer k is randomly overlapped with the cloud block Ci,i+2 (and there are no other
clouds above level k, so C1,k = Ci,i+2). Regions I, II and III show the relationship between C1,k and C1,k+1.
(c) The matrix elements C1,k , CN,k and C1,N needed to calculate radiative fluxes at level k in the cloud matrix

method.

variable in the superscripts represents the clear or cloudy case for the added layer k
(i.e. the layer transmissions and reflections, tk, tk(µ0), rk, and rk(µ0) refer to the clear
or cloudy case, see appendix A). Similarly we can write down R

o
1,k+1. This process

continues to the surface. Also, we need to calculate upward paths for Ro
N,k(µ0) and

R
o
N,k (k = N, . . . , 1) in a similar way.

Finally, the downward flux at level k is obtained as (see Fig. 1(c))

F−
k = f o;oF−o;o

k + f o;cF−o;c
k + f c;oF−c;o

k + f c,cF
−c,c
k , (2)

where

f o;o = OC1,k;CN,k
= C1,k + CN,k − C1,N ,

f o;c = C1,k − OC1,k ;CN,k
= CN,1 − CN,k,

f c;o = CN,k − OC1,k;CN,k
= C1,N − C1,k,

f c,c = 1 − C1,N

represents the cloud fractional relation between the upward and downward paths;
OC1,k;CN,k

represents the overlapping fraction of cloud above level k (C1,k) and below it
(CN,k); F−c;o

k is given by (A.9) with the downward path values of T c
1,k(µ0) and R

c
1,k for

the clear-sky portion and with upward path values of Ro
N,k(µ0) and R

o
N,k for the cloudy

portion. Similarly F
−o;o
k is for the cloudy downward path and the cloudy upward path,

and so on. Upward fluxes also consist of four contributions, analogously to (2).
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3. QUASI MULTI-COLUMN (QMC) SCHEME

In section 5, it is shown that the cloud matrix method cannot accurately handle the
radiative transfer for random overlap. In fact (2) does not describe the physics properly
for random overlap of clouds. This is because, in the final calculation for the fluxes, (2)
and Fig. 1(c) overly simplify the multiple-scattering process.

This difficulty can be overcome using the multi-column approach (Stubenrauch
et al. 1997; Collins 2001; Räisänen et al. 2004). In the multi-column method, radiative-
transfer calculations are performed for a set of columns. The columns are defined so that
each layer inside a column has a cloud fraction of either 0 or 1. Thus, there is no cloud-
fraction weighting problem in any column and accurate results should be obtained. The
problem with the multi-column approach is it is time consuming since the number of
columns required can be up to 2N , where N is the number of non-adjacent cloud blocks.

(a) Cloud overlap
We first consider the computation of cloud fraction for adjacent cloud layers. Most

GCMs assume maximum overlap, or perfect correlation, for adjacent cloud layers. So
when there is cloudiness in two layers i and i + 1, the combined cloud fraction for these
layers is

Ci,i+2 = ci + ci+1 − Oci;ci+1 = max(ci, ci+1), (3)

where the overlapping portion is Oci ;ci+1 = min(ci, ci+1) (see the left part of Fig. 1(a)).
However, since the cloud fraction for a model layer is the horizontal summation of all
the clouds in the layer, the correlation between adjacent cloud layers is generally not
perfect. This can be addressed by adding some random overlap components (Hogan and
Illingworth 2000):

Oci ;ci+1 = αi min(ci, ci+1) + (1 − αi)cici+1, (4)

where cici+1 is the overlap region for random overlap and αi is the cloud overlap
parameter, between layers i and i + 1. Since cici+1 ≤ min(ci, ci+1), Oci ;ci+1 in (4) is
smaller than that in (3) for all αi < 1. Maximum overlap is therefore relaxed by allowing
a random overlap component. We call this relaxed maximum (RM) overlap for adjacent
clouds (see the middle part of Fig. 1(a)).

Now, assume that the mth cloud block consists of n > 2 layers i, i + 1, . . . , i +
n − 1. The total cloud fraction for such a cloud block, denoted as C̃m = Ci,i+n is
estimated here by applying (4) recursively. That is, for example the combined cloud
fraction for layers i, i + 1 and i + 2 is computed as

Ci,i+3 = Ci,i+1 + ci+2 − {αi+1 min(Ci,i+2, ci+2) + (1 − αi+1)Ci,i+2ci+2}. (5)

This process is continued until the cloud fraction for the entire cloud block Ci,i+n is
obtained. Note that Ci,i+n ≥ max(ci, ci+1, . . . , ci+n−1), where the equality holds only
when all αl = 1. Thus, Ci,i+n is the relaxed maximum cloud fraction for such a block.

Observations (Hogan and Illingworth 2000) also show that non-adjacent cloud
blocks adhere well to the random overlap rule, which means there is no vertical
correlation between non-adjacent cloud blocks. Since RM overlap is assumed for
adjacent cloud blocks, our entire overlap scheme can be denoted as ‘relaxed maximum
and random’ (RMR) overlap. This should be more realistic than the widely used
‘maximum-random overlap’ assumption.
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Figure 2. Top panels show the random overlap cloud system (Ca and Cb) being split into two regions I and II
as (a) or (b); bottom panels show the random overlap cloud system (Ca , Cb and Cc) being split into three regions

shown in (c).

(b) Division of GCM column to subcolumns
The multi-column approach consists of subdividing each GCM column into subgrid

columns that are either overcast or clear at each level. This approach is modified here by
limiting the number of subcolumns and by allowing subcolumns to contain fractionally
cloudy layers under certain conditions. In this way, the number of columns can be
considerably reduced without compromising the accuracy of the results significantly.
Let us start with a simple case of two non-adjacent cloud blocks, Ca and Cb, as shown
in Fig. 2(a). The total cloud fraction is

C = Ca + Cb − OCa ;Cb
. (6)

If we restrict the cloud fraction to be either 0 or 1 in each column, four columns are
needed. However, we can separate the whole cloud-covered area into two regions, I and
II, as shown in Figs. 2(a) or (b). The area fractions for regions I and II are Cb and
Ca − OCa;Cb

(Fig. 2(a)) or Cb − OCa ;Cb
and Ca (Fig. 2(b)), respectively. In practice, it

was found best to choose the columns so that within each column, the optically thickest
cloud has a cloud fraction of 1. For example, if the upper cloud has a larger optical depth
than the lower one, the pattern of Fig. 2(a) is chosen; otherwise the pattern of Fig. 2(b)
is used.

Though partial cloudiness exists in region I of Fig. 2(a) and region II of Fig. 2(b), it
is restricted entirely within the larger cloud domain. Regardless of where the smaller par-
tial cloud is located within such a column, the radiative-transfer results are unchanged.
Computation of radiative fluxes for these kinds of regions is discussed in section 3(c).
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For a more general case with three cloud blocks, e.g. low, middle and high clouds,
with corresponding cloud fractions Ca , Cb, and Cc, the cloud overlap pattern for Ca

and Cb is the same as in Fig. 2(a). The third block Cc is divided into three parts,
corresponding to its overlap pattern with the lower blocks (see Fig. 2(c)): region I, where
Cc overlaps no other clouds; region II where it overlaps the optically thickest block Cb;
and region III, where it overlaps Ca but not Cb. Thus, we have the cloud overlap pattern
shown in Fig. 2(c) with six cloud blocks in three regions. The corresponding cloud
fractions are

C1 = Ca − OCa;Cb
= Ca × (1 − Cb),

C2 = Cb,

C3 = Cc − OCc;(Ca,Cb) = (1 − Ca) × (1 − Cb) × Cc,

C4 = OCa;Cb
= Ca × Cb,

C5 = OCc;Cb
= Cb × Cc,

C6 = OCc;(Ca,Cb) − OCc;Cb
= Ca × (1 − Cb) × Cc,

where OCa;Cb
is the overlap region between Ca and Cb, OCc;Cb

is the overlap region
between Cc and Cb, and OCc;(Ca,Cb) is the overlapped region between Cc and the cloud
coverage for the cloud system formed by Ca and Cb, i.e. Ca + Cb − OCa ;Cb

. The first
form of the expressions for C1, . . . , C6 is fully general and the second form comes from
random overlap of separate cloud blocks.

Therefore, radiative fluxes are computed for only four subcolumns (for three cloudy
regions as depicted in Fig. 2, and for the cloud-free region), as compared to 2M = 8
subcolumns for the multi-column approach. For this case, our method uses about 50%
less computing time.

If there is another cloud block above Cc, the overlap becomes more complicated
with an extra four possible patterns. It will complicate the radiation calculations and is
probably not affordable for most climate models. We simply assume all clouds above
Cc are randomly overlapped with Cc and form a single cloud block with Cc. Therefore
only the solution corresponding to Fig. 2(c) is treated. It is shown that the case of more
than three cloud blocks in a grid column seldom occurs in GCM simulations.

(c) Radiative-transfer algorithm
In QMC, the cloud system is split into 1–3 regions depending on the number of

cloud blocks present. Radiative fluxes are computed for each region separately. There
are two aspects to be considered. First, how to compute radiative transfer for individual
cloud blocks; and second, how to combine the radiative fluxes for the entire column.

It is shown in section 5 that, while the cloud matrix method has difficulty with
treating random overlap, it yields good results for individual cloud blocks when the
layers within a block are close to maximum overlap. However, for the QMC scheme,
three cloud matrices would be needed for detailed consideration of the cloud structure
for each cloud block. We therefore propose a simpler method to deal with the cloud
configuration within each cloud block.

We first compute the total cloud fraction C̃m for each cloud block m using (5). The
relationship between each layer inside the cloud block is then relaxed for the radiative-
transfer calculations: the block cloud fraction C̃m is used for each layer i within the
block instead of its true cloud fraction ci , and layer reflection and transmission are
computed as cloud-fraction weighted mean values. For example, the direct transmission
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for layer i within a cloud block of fraction C̃m is

〈ti (µo)〉 = wit
o
i (µo) + (1 − wi)t

c
i (µo), (7)

where wi = ci/C̃m. The same applies to the layer’s diffuse transmission t i and direct
and diffuse layer reflections ri(µo) and ri , respectively. This approach resembles that
employed by Stubenrauch et al. (1997), with the difference that those authors used
cloud-fraction weighting of cloud optical depth, whereas we have weighted using single-
layer reflection and transmission. A similar weighting method was analysed and applied
in Fouquart and Bonnel (1980) and Morcrette and Fouquart (1986). We would like to
emphasize our calculations show that (7) always generates better results compared to
the method of cloud-fraction weighting of cloud optical depth.

To compute radiative fluxes for the different regions shown in Fig. 2(c), the
following approach is used. First, for region I as well as for the clear part of the GCM
column, fluxes can be computed simply as described in appendix A. For region III, the
downward path quantities R1,k and T1,k(µ0) are computed separately for the cloudy
and clear parts of the region from the TOA to the top of the lower cloud layer. There, a
weighted average is taken, i.e.

R1,k = wR
o
1,k + (1 − w)R

c
1,k, (8)

where w = C6/C1 (see Fig. 2(c)). Below the top of the lower cloud layer, the calculation
continues as a single path to the surface. Simple weighting by cloud fraction is valid here
since the partial cloud is totally overlapped by the lower cloud. As mentioned for (1) and
(2), cloud-fraction weighted results are generally invalid for random overlap cases. For
the part of region III above the top of the lower cloud, the radiative fluxes are computed,
for example, as

F−
k = wF

−o;o
k + (1 − w)F

−c;o
k , (9)

where the notations are the same as in (2).
For region II, a similar approach is taken. The downward path quantities R1,k and

T1,k(µ0) are separated into cloudy and clear paths from the TOA to the top of the middle
cloud block (C2), and the upward path quantities RN,k and RN,k(µ0) are computed
separately for cloudy and clear paths from the surface to the bottom of the middle cloud
block.

(d) Cloud subgrid-scale variability
Accounting for cloud subgrid-scale variability, Barker (1996) specified the cloud

water path probability density function with a gamma distribution function, and he ob-
tained the single-layer transmission and reflection weighted by the gamma distribution
in optical depth. This algorithm is based on the assumption that, whenever clouds occur
in a model layer, the distribution of cloud (liquid or ice) water path W across the grid-
cell can be described by

pγ (W | 〈W〉, ν) = 1

!(ν)

(
ν

〈W〉
)ν

Wν−1 e−νW/〈W〉, {〈W〉 > 0; ν > 0}, (10)

where 〈W〉 is mean cloud water path, ν describes the width of the distribution, and !(ν)
is the gamma function. As discussed in Li and Barker (2002), the distribution for optical
depth is the same as the distribution for W , provided the cloud droplet effective radius
is constant within a grid cell.
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The exact solution for radiative transfer through cloud with subgrid-scale vari-
ability is much more difficult for solar radiation in comparison with that for the infrared
(Li 2002; Li and Barker 2002) because of the strong scattering present. Although the
gamma-distribution-weighted transmission and reflection can be obtained for the down-
ward and upward paths separately, similar to the infrared case, the vertical correlation
cannot be properly addressed in the final equations for the fluxes. This is because the
gamma-function-weighted mean results for the downward and upward paths cannot pro-
duce correct results for the flux with the upward and downward paths being properly
matched. In other words, a larger liquid-water path (LWP) region in the downward path
should correspond to a larger LWP region in the upward path, but this information is
lost in the gamma-integral mean results for the reflection and transmission. Therefore
the exact gamma-weighted solution for subgrid variability is difficult to obtain for solar
radiation (Oreopoulos and Barker 1999; Kato, 2003).

If we neglect scattering (setting ω = 0 in (A.4), the direct layer transmission be-
comes e−τ/µ0 , where τ is the optical depth. The gamma-function-weighted transmission
is

T (〈τ 〉, ν) =
∫ ∞

0
pγ (τ | 〈τ 〉, ν) e−τ/µ0 dτ =

(
ν

ν + 〈τ 〉/µ0

)ν
≥ e−〈τ 〉/µ0, (11)

where 〈τ 〉 is the mean value of τ ; this equals e−〈τ 〉/µ0 only for ν → ∞ or 〈τ 〉 = 0.
Therefore, using the mean optical depth for the inhomogeneous cloud will underestimate
the transmission. When scattering processes are included, the solution is much more
complicated but the physics is the same. Therefore, in order to obtain accurate results
accounting for the cloud subgrid variability but still based on the traditional radiative-
transfer method shown in appendix A, the cloud optical depth has to be reduced. This
has been realized before for various applications (Cahalan et al. 1994; Oreopoulos and
Barker 1999).

Based on calculations for overcast clouds with various combinations of 〈τ 〉, ν and
µ0, we propose a simple empirical scheme of optical-depth adjustment. For layer k in a
cloud block, the adjusted cloud optical depth is

τ ∗
k = τk

1 + 0.185(2 − µ0)
0.4fνfτ

, (12)

with

fν = 1

1 + 5.68ν1.4
, (13)

where ν is the minimum value for any layer within the cloud block (see the detailed
discussion in Li and Barker 2002),

fτ = τk + 9.2

√√√√ k∑
j=i

τj , (14)

i is the top layer of the cloud block and the summation in (14) is from the top layer of
the cloud block to the considered layer k. The layer optical depth is reduced more for
the lower layers in a cloud block since the difference in direct transmissions between
T (〈τ 〉, ν) and e−〈τ 〉/µ0 increases for increasing 〈τ 〉. Apart from this scaling of optical
depth, radiative fluxes for inhomogeneous cloud fields are computed exactly in the same
manner as in the homogeneous case.
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4. RADIATION MODEL AND BENCHMARK CALCULATIONS

The new model that combines RMR cloud overlap and horizontal cloud variability
has been tested in a radiation algorithm employing the correlated-k distribution method
for gaseous transmission (Li and Barker 2005). The cloud solar optical properties are
based on Dobbie et al. (1999) for the liquid phase and Fu (1996) for the ice phase.
The new radiative-transfer model was assessed using artificial atmospheres created by
embedding synthetic cloud forms into a midlatitude summer profile (McClatchey et al.
1972). A surface albedo of 0.2 was assumed.

The benchmark results were calculated using the Independent Column Approxima-
tion (ICA). For cases involving random overlap of low, middle and high clouds (Figs. 4
and 7 and Tables 2 and 5), ICA was combined with a stochastic approach: N calcula-
tions were made by a 1-D column radiation model, so that the cloud fraction in each
cloud block was set randomly either to 0 or 1 (clouds were assumed identical within a
contiguous block). For each cloud block, the probability of choosing a cloud fraction
of 1 is equal to the mean cloud fraction for that cloud block. The radiative-transfer
code was then applied to each N columns (either clear or cloudy) and the results were
averaged to produce the fluxes and the profile of heating rates for the random cloud
system. This method is equivalent to a 1-D Mont Carlo simulation, since the results are
a statistical average of a random set of clouds. The standard deviation for the 1-D Mont
Carlo simulation is therefore proportional to N−1/2. Thus, a relatively large N (generally
N > 10 000), is required in order to obtain sufficiently high statistical accuracy.

The radiative treatment of subgrid variability for overcast clouds is performed
numerically by utilizing a gamma weighting function for the cloud variability and
performing the calculations for 10 000 points over the distribution. The result is obtained
by the numerical integration of these results. For broken cloud fields, we use the 1-D
bounded cascade model (Cahalan et al. 1994) to create the cloud field with subgrid-scale
variability and we compute the radiative properties using these distributions. Results are
obtained again by numerical integration of the radiative properties for this case. All the
subgrid cloud cases are the same as those in Li and Barker (2002) for the infrared, the
details for how to generate subgrid cloud field by using the cascade mode are shown in
that paper.

5. RESULTS

(a) Cloud overlap for homogeneous clouds
We first consider the radiative transfer through a single cloud block with various

cloud configurations. In Fig. 3, the clouds are resolved into several identical sub-
layers (each 250 m thick). The shaded areas indicate the cloud configurations and the
values inside the shaded areas indicate the cloud fraction. For high clouds each two
neighbouring model layers are with the same cloud fraction. Cases A—D are cloud
configurations with maximum overlap and case E exhibits slantwise overlap.

Low clouds are positioned from 1.0 to 2.0 km with a liquid-water content (LWC)
of 0.22 g m−3 and an effective radius (re) of 5.89 µm. The middle clouds are positioned
from 4.0 to 5.0 km with LWC = 0.28 g m−3 and re = 6.2 µm. Lastly, the high clouds
are positioned from 10 to 12 km with an ice-water content (IWC) of 0.0048 g m−3 and
a mean effective size (De) of 30 µm. The visible optical depth is τ ≈ 60, 72 and 0.49
for the low, middle and high cloud, respectively.

The cloud matrix method produces very accurate heating-rate results for all cases
in Fig. 3, with relative errors generally less than 5%. In Table 1 it is shown that the
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Figure 3. Heating-rate profiles for clouds with maximum overlap (cloud configurations of A–D) and for clouds
with slant-wise overlap (configuration E). The numbers in the shaded areas show the cloud fractions. The solid
lines are the benchmark results based on independent column approximation calculations, the dashed lines are the
results for the cloud matrix method, and dotted lines are the results for the simplified scheme (7). Solar zenith
angle is (a) 0◦ and (b) 60◦. Each model layer is 250 m thick, and for high clouds every two neighbouring model

layers have the same cloud fraction.

corresponding errors for upward fluxes at the TOA and downward fluxes at the surface
are also small, relative errors being usually below 3%.

For the QMC method with the simple approximation given in (7), the accuracy
of heating rates varies from case to case. Let us first examine the cases with low and
middle clouds. For the cases A and C, the errors are relatively large, but for the other
three cases, (7) produces results that are similar to the cloud matrix method. In cases
A and C, where cloud fractions are smaller near cloud top than lower down, the use
of cloud-fraction weighted transmission and reflection according to (7) enhances the
transmission and reduces the reflection in such layers, but the reduction is bigger than the
enhancement (see Table 1), which leads to more energy being held. Therefore, heating
rates are overestimated in the upper and middle parts of the cloud although not in the
uppermost layer. This also is related to overestimated enhancement of cloud absorption
due to multiple scattering within the cloud. In cases B and D, where cloud fraction is
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Figure 3. Continued.

largest in the top layer, heating rates are very accurate in the upper parts of the cloud.
Below cloud top, the heating rates are generally small because the upper layers deplete
the solar energy reaching the lower layers. For these cases the errors in absolute heating
rate are small.

For high clouds, as for the cases with low and middle clouds, cases A and C are
less accurate than cases B and D for heating rates, especially in the upper parts of the
cloud. But since the high cloud is optically thin, solar energy can easily penetrate into
the lower regions of the cloud. Heating rates are underestimated in the lower regions of
the cloud for cases B and C, particularly when the solar elevation is high (Fig. 3(a)).
Table 1 lists the radiative-flux errors at the TOA and at the surface also for the simple
approximation given by (7). Generally the relative errors are less than 5%.

Overall, the accuracy of using (7) is reasonably good even for the detailed cloud
structures considered in Fig. 3. This demonstrates that (7) can perform well both for
cases with αi = 1 (i.e. maximum overlap cases A–D) and αi < 1 (case E). In case E,
C̃m in (7) was determined by setting αi = exp(−di/ l), where di is the distance between
layers i and i + 1, and the decorrelation length is l ≈ 2.7 km following (4).
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TABLE 1. UPWARD AND DOWNWARD FLUXES (W m−2) AT THE TOA AND AT THE SURFACE FOR
CLOUDS AT THREE ALTITUDES AND FIVE OVERLAP CONFIGURATIONS (LABELLED A THROUGH E),
FOR SOLAR ZENITH ANGLES 0◦ AND 60◦ . FIGURE 3 ILLUSTRATES THE FIVE CLOUD CONFIGURATIONS.
FOR EACH CLOUD CASE THE VALUES IN THE LEFT COLUMN ARE BENCHMARK RESULTS, THE VALUES
(IN PARENTHESES) IN THE FIRST ROW OF THE RIGHT COLUMN ARE ERRORS FOR THE CLOUD MATRIX
METHOD COMPARED TO THE BENCHMARK, AND THE VALUES (IN PARENTHESES) IN THE SECOND ROW

OF THE RIGHT COLUMN ARE ERRORS FOR THE QMC METHOD.

Cloud A B C D E

F+ at TOA
θ0 = 0

High 249.7 ( −0.1) 249.7 ( −0.1) 249.4 ( −0.1) 250.3 ( −0.1) 248.3 ( −0.6)
( −3.8) ( −3.7) ( −5.7) ( −2.9) ( −3.5)

Middle 750.9 ( 11.8) 754.3 ( −4.0) 622.0 ( 19.3) 657.5 ( 9.0) 445.9 ( 1.3)
(−36.1) (−16.9) (−18.6) ( −3.1) (−36.1)

Low 684.9 ( 11.8) 691.5 ( −2.3) 581.6 ( 12.3) 616.6 ( 3.2) 422.1 ( 1.4)
(−27.1) (−14.1) ( −8.8) ( −8.0) (−29.9)

θ0 = 60
High 151.5 ( 0.1) 151.6 ( 0.1) 149.9 ( 0.2) 152.5 ( 0.1) 144.5 ( 0.2)

( −3.9) ( −3.3) ( −3.6) ( −2.6) ( −2.0)
Middle 407.5 ( 4.2) 409.7 ( −1.4) 339.4 ( 6.7) 352.2 ( 3.1) 242.8 ( 0.6)

(−38.7) ( −5.9) (−24.7) ( −1.1) (−18.3)
Low 373.1 ( 4.5) 377.2 ( −0.8) 317.0 ( 4.3) 329.9 ( 1.2) 230.4 ( 0.7)

(−32.7) ( −4.7) (−17.6) ( −2.6) (−15.2)

F− at surface
θ0 = 0

High 1075.8 ( 0.0) 1075.8 ( 0.0) 1076.8 ( 0.1) 1074.6 ( 0.0) 1081.3 ( 0.0)
( 5.0) ( 5.3) ( 5.5) ( 4.2) ( 3.8)

Middle 410.9 ( −7.2) 410.9 (−15.0) 585.5 (−25.2) 539.2 (−11.2) 819.9 ( −1.0)
( 14.6) ( 18.8) ( −1.8) ( 1.7) ( 29.5)

Low 440.9 ( −9.9) 440.4 (−16.3) 595.4 (−38.3) 546.6 ( −4.6) 829.2 ( −1.3)
( 9.6) ( 16.4) (−11.1) ( 8.4) ( 25.9)

θ0 = 60
High 478.7 ( −0.1) 478.7 ( −0.1) 480.7 ( −0.2) 477.5 ( −0.1) 487.4 ( −0.2)

( 4.2) ( 3.6) ( 3.9) ( 2.8) ( 2.3)
Middle 165.8 ( 6.2) 165.8 ( −5.1) 250.2 ( −6.6) 234.3 ( −4.0) 367.4 ( −0.3)

( 25.3) ( 6.5) ( 12.4) ( 0.6) ( 14.9)
Low 175.5 ( 5.2) 175.6 ( −5.6) 253.2 ( −3.8) 236.7 ( −1.6) 370.4 ( −0.4)

( 24.6) ( 5.5) ( 8.4) ( 2.8) ( 13.5)

See text for further explanation.

Next, we address the performance of the algorithms for cases with three randomly
overlapped cloud blocks (low, middle and high cloud) in a GCM column. The cloud
fractions for each cloud block are indicated by shading in Fig. 4. Cloud fraction is
assumed to be vertically constant within each cloud block. The individual clouds are
resolved into several identical sub-layers, each 250 m thick. The cloud optical properties
are the same as in Fig. 3 and ICA benchmark calculations are based on N = 10 000.

Three cloud cases (ran1, ran2 and ran3) are considered in Fig. 4. It is noted that
the cloud matrix method does not perform well. Absolute errors reaching 16 K d−1,
and relative errors often exceeding 40%. Furthermore, negative heating rates occur
frequently. Errors in downward short-wave flux at the surface are also large, with a
maximum error of 155 W m−2.

For the QMC method, errors are dramatically reduced in comparison with the cloud
matrix method. Absolute heating-rate errors are well below 1 K d−1 and relative errors
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Figure 4. Top panels show the heating-rate profiles for three cloud cases of ran1, ran2, and ran3 from the
benchmark results with N = 10 000 ICA calculations. The clouds are in full random overlap. The cloud fractions
are shown inside the shaded areas. The middle panels show the differences in the heating rate between the cloud
matrix method and the benchmark ICA. The bottom panels show the differences in the heating rates between
QMC and the benchmark ICA. The solid lines are the results for solar zenith angle 0◦ and the dotted lines are

results for solar zenith angle 60◦.

are less than 2%. radiative-flux errors are also very small, with a maximum error of
3 W m−2 (see Table 2).

In order to assure QMC will work in most situations, more complex tests are
considered by combining the cloud cases in Figs. 3 and 4 together. Figure 5 is the
same as Fig. 4 but replacing the individual cloud blocks in Fig. 4 with the various
cloud configurations A–D shown in Fig. 3. The error in heating rate is shown in Fig. 5
enhanced for QMC since the error for each individual cloud configuration is brought
in. The error in heating rate now could be up to 5 K d−1. The worst case occurs for the
middle cloud in ran3. As shown in Fig. 3, the error for such a configuration as C is large.
The change in error for the cloud matrix method is small since the cloud matrix method
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TABLE 2. COMPARISONS OF UPWARD AND DOWNWARD FLUXES (W m−2)
AT THE TOA AND AT THE SURFACE FOR RANDOM OVERLAP CLOUD FIELDS
OF RAN1, RAN2 AND RAN3, AT SOLAR ZENITH ANGLES 0◦ AND 60◦. FOR
EACH CASE, THE NUMBER ON THE LEFT IS THE BENCHMARK ICA RESULT,
THE UPPER NUMBER IN PARENTHESES IS THE ERROR FOR THE CLOUD MATRIX
METHOD COMPARED TO ICA, AND THE LOWER NUMBER IN PARENTHESES IS

THE ERROR FOR THE QMC MODEL (W m−2).

θ0 = 0 θ0 = 60

Cloud F+(TOA) F−(surface) F+(TOA) F−(surface)

ran1 600.8 (−3.2) 595.5 ( −94.2) 322.6 (−0.8) 260.7 (−43.3)
(−1.3) ( −1.6) (−0.5) ( −0.4)

ran2 651.1 (−0.6) 511.4 (−155.0) 350.8 ( 27.2) 218.4 (−81.7)
(−0.9) ( −1.6) (−0.4) ( −0.4)

ran3 733.4 (−3.2) 430.5 ( −40.6) 388.4 (−1.3) 185.5 (−18.7)
(−1.8) ( −2.7) (−0.7) ( −0.9)

See text for further explanation.

Figure 5. The same as Fig. 4 but replacing the individual cloud blocks in Fig. 4 with the various cloud
configurations A–D shown in Fig. 3.
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TABLE 3. THE SAME AS TABLE 2 BUT CORRESPONDING TO FIG. 5 FOR EACH
CLOUD BLOCK WITH CONFIGURATIONS A–D (cf. FIG. 3). FOR EACH CASE, THE
NUMBER ON THE LEFT IS THE BENCHMARK ICA RESULT, THE UPPER NUMBER
IN PARENTHESES IS THE ERROR FOR THE CLOUD MATRIX METHOD COMPARED
TO ICA, AND THE LOWER NUMBER IN PARENTHESES IS THE ERROR FOR THE

QMC MODEL (W m−2).

θ0 = 0 θ0 = 60

Cloud F+(TOA) F−(surface) F+(TOA) F−(surface)

ran1 558.3 ( 15.4) 652.4 ( −93.2) 305.7 ( 6.7) 282.2 (−41.5)
(−13.0) ( 1.6) ( −9.9) ( 5.1)

ran2 643.5 ( 41.2) 523.0 (−138.9) 352.3 ( 21.3) 217.7 (−60.4)
(−42.7) ( 11.3) (−28.4) ( 18.9)

ran3 686.7 ( 27.9) 489.4 ( −62.9) 370.9 ( 10.3) 206.7 (−23.9)
(−29.2) ( −0.3) (−26.3) (−10.3)

See text for further explanation.

could handle each cloud configuration accurately. However, generally the results for
QMC are still much better than those for the cloud matrix method. Correspondingly the
errors in flux for QMC are enhanced (see Table 3) with a maximum of 8% for the ran3
case.

In summary, the cloud matrix method performs somewhat better than the QMC
method with approximation (7) for individual cloud blocks that are close to maximum
overlap. For cases with random overlap, the QMC method provides quite good results
whereas the cloud matrix method gives significant errors.

(b) Cloud subgrid variability
Cloud subgrid variability refers to horizontal variations within each cloud block,

and it is thus a distinctly different concept from cloud overlap, which emphasizes the
vertical correlation between cloud blocks.

In Fig. 6, three overcast cloud blocks are considered: high, middle, and low. Cloud
optical properties are the same as those used in the previous subsection. Stripes of
different grey scale in Fig. 6 characterize the horizontal inhomogeneity of the clouds.
The vertical alignment of the stripes signifies that cloud horizontal variations are
assumed to be perfectly correlated in the vertical within each cloud block.

On the left of Fig. 6 are homogeneous cloud heating-rate profiles for the three
cases. Also shown are heating-rate differences to ICA benchmark results for two 1-D
models: for the horizontally homogeneous cloud model and for the inhomogeneous
cloud model using (12). The ICA values were obtained by explicit integration of the 1-D
homogeneous model weighted by the appropriate gamma distribution in (10). For low
and middle clouds, the homogeneous model dramatically overestimates heating near
the cloud top. For ν = 0.5, the errors can be about 20 K d−1. However, based on our
parametrization of (12), errors are greatly reduced, less than 2 K d−1 in most cases.

Table 4 lists the upward flux at the TOA and downward flux at the surface that
correspond to the plots in Fig. 6 for two different solar zenith angles. The errors for the
homogeneous model cloud can be very large for ν = 0.5, especially for the downward
flux at the surface. The downward flux at the surface for the inhomogeneous cloud can
be about three times larger than that for the corresponding homogeneous model. Even
for ν = 2, the relative errors can be about 35% for the homogeneous model. However,
based on our parameterization, errors for the upward and downward fluxes decrease
dramatically irrespective of ν and generally errors are less than 1%.
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(a)

Figure 6. Left column shows heating-rate profiles for homogeneous clouds. Shaded regions indicate cloud
position. The stripes with different darkness indicate horizontal inhomogeneity. The other columns show
heating-rate differences between two 1-D models and benchmarks computed by the ICA for inhomogeneous
clouds with variability described by ν, as listed on the plots. Solid lines are for the inhomogeneous scheme
with layer correlations as defined in (12); dotted lines are for the homogeneous model. Solar zenith angle is

(a) 0◦ and (b) 60◦.

The situation is different for the high-cloud case. The horizontally homogeneous
model produces very accurate heating rates (Fig. 6) that are no worse than those
using our parametrization (12). In other words, the effect of subgrid-scale variability
is very small. Because the cloud optical depth is small in the high-cloud case, direct
transmission dominates over multiple scattering, and the difference between the exact
result (power function) and the exponential (homogeneous cloud result) in (11) is small.
This weak subgrid effect for high clouds can be understood from another argument that
the reflectance and transmittance functions vary linearly for small optical thicknesses,
so the integration of results for each weighting function point is similar to the reflectance
and transmittance derived from the mean optical depth, and so inhomogeneity has little
effect.
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(b)

Figure 6. Continued.

TABLE 4. COMPARISONS OF UPWARD AND DOWNWARD FLUXES (W m−2) AT THE TOA AND AT
THE SURFACE FOR LOW AND MIDDLE CLOUDS FOR TWO SOLAR ZENITH ANGLES (0◦ AND 60◦) AND
FOR THREE VALUES OF ν . FOR EACH CASE, THE FIRST NUMBER IS THE BENCHMARK ICA RESULT,
THE SECOND NUMBER (IN PARENTHESES) IS THE ERROR FOR THE INHOMOGENEOUS MODEL (12)

AND THE THIRD NUMBER (IN PARENTHESES) IS THE HOMOGENEOUS MODEL ERROR.

F−(surface)
ν = 0.5 ν = 1.0 ν = 2.0

Middle cloud 0◦ 402.2 (−1.0) (−269.4) 280.7 ( 1.7) (−147.9) 202.8 ( 1.0) (−70.0)
60◦ 151.2 (−1.7) (−105.4) 99.7 ( 4.8) ( −53.9) 70.2 ( 3.8) (−24.4)

Low cloud 0◦ 430.8 (−2.6) (−276.2) 311.7 (−2.9) (−157.1) 231.9 (−3.9) (−77.3)
60◦ 161.5 (−3.8) (−108.4) 110.4 ( 2.7) ( −57.3) 79.9 ( 2.2) (−26.8)

F+(TOA)
ν = 0.5 ν = 1.0 ν = 2.0

Middle cloud 0◦ 757.9 ( 0.9) ( 207.2) 850.4 (−2.3) ( 114.7) 910.3 (−1.5) ( 54.8)
60◦ 422.2 ( 4.5) ( 84.3) 463.7 (−3.1) ( 42.8) 487.2 (−3.1) ( 19.3)

Low cloud 0◦ 695.2 (−0.6) ( 194.4) 777.9 ( 0.0) ( 111.7) 834.0 ( 1.5) ( 55.6)
60◦ 387.3 ( 4.7) ( 79.5) 425.0 (−1.7) ( 41.8) 447.3 (−1.8) ( 19.5)

See text for further explanation.
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Figure 7. Top panels show the heating-rate profiles for ICA benchmark calculations for the three random overlap
cases ran1, ran2 and ran3 as in Fig. 4, but with cloud subgrid-scale variability included. Layer cloud fractions are
listed inside the shaded regions with the corresponding values of ν listed above them. Bottom panels show the
corresponding heating-rate errors for the QMC scheme using (12). The solid lines are the results for solar zenith

angle 0◦ and the dotted lines are results for solar zenith angle 60◦. See text for further explanation.

Flux differences are not listed in Table 4 for the high-cloud case because the errors
are generally smaller than a few W m−2. For the inhomogenous case we don’t show the
results for cloud with configurations as shown in Fig. 3 for the homogenous case, we
found the errors in heating rate and flux are similar to the homogenous case.

(c) Fractional clouds with subgrid variability
Figure 7 shows schematically the cloud position, cloud fraction, and subgrid-scale

variability for three configurations of a cloud system containing three cloud blocks. Each
cloud contains several contiguous identical sub-layers (the cloud fractions and overlap
patterns are the same as Fig. 4 for the homogeneous cases). Contiguous layers are unique
realizations of the cascade model and all three cloud blocks in each case are positioned
in the horizontal at roughly random locations. In each case, ICA benchmarks results are
averaged for 819 920 column calculations the same as those in Li and Barker (2002).
Results are only shown for the QMC scheme with the inhomogeneity parametrization
given by (12).
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TABLE 5. COMPARISONS OF UPWARD AND DOWNWARD FLUXES
(W m−2) AT THE TOA AND AT THE SURFACE FOR RANDOM OVER-
LAP CLOUD FIELDS OF RAN1, RAN2, AND RAN3 AS IN TABLE 2, BUT
NOW WITH CLOUD SUBGRID-SCALE VARIABILITY INCLUDED. FOR EACH
CASE, THE FIRST NUMBER IS THE BENCHMARK ICA RESULT, THE SEC-
OND NUMBER (IN PARENTHESES) IS THE ERROR FOR THE QMC MODEL
USING (12). CORRESPONDING HEATING-RATE PLOTS ARE SHOWN IN

FIG. 7.

θ = 0◦ θ = 60◦

Cloud F+(TOA) F−(surface) F+(TOA) F−(surface)

ran1 541.0 (−4.5) 675.3 (−1.0) 299.8 (−2.6) 290.5 (1.6)
ran2 579.0 (−3.7) 610.7 ( 0.2) 322.6 (−2.2) 255.9 (2.2)
ran3 643.9 (−8.0) 546.6 (−0.9) 354.4 (−4.0) 228.6 (2.2)

Heating-rate errors occur mostly in low and middle clouds. This is expected since
the effect of inhomogeneity for high clouds is small by comparison. In comparison with
Fig. 4 (for the homogeneous case), the errors shown in Fig. 7 are slightly larger.

Values of upward flux at the TOA and downward flux at the surface and correspond-
ing errors relative to benchmark calculations are listed in Table 5. The maximum error
in flux is only about 8 W m−2 or 1.2%. If inhomogeneity is neglected, the errors can
exceed 100 W m−2 for the same cloud overlap patterns (cf. Table 2).

6. CONCLUSION

There is a strong push for climate models to address such problems as the cloud
feedback issue or the climate impact of aerosols. To resolve such questions, the sensi-
tivity of the GCMs to systematic changes in the radiative properties of a few W m−2

is necessary. We note in this paper that the error in radiative properties introduced by
assumptions of overlap and inhomogeneity can greatly exceed this threshold. In fact,
we find that in some representative cases studied the errors introduced by commonly
used overlap schemes in current GCMs can be as much as 155 W m−2 for fluxes and
more than 16 K d−1 for heating rates. A subgrid multi-column approach circumvents
this problem but can become computationally expensive for large numbers of columns.

In this paper, we outline a new approach to the treatment of overlap and inhomo-
geneity at solar wavelengths. Each element of the treatment is systematically tested ver-
sus ICA benchmarking calculations. For cases with random overlap and inhomogeneous
clouds, up to 800 000 columns were used for benchmarking comparisons with cloud
arrangements generated by a cascade model. We are not aware of any such previous
comparisons for other cloud overlap treatments.

We have developed a simplified quasi multi-column approach to the overlap prob-
lem. It has almost as good accuracy as the multi-column approach but has only a maxi-
mum of four columns (one clear and three cloudy). Incorporated into the QMC approach
is a proper algorithm for the treatment of the coupling of the upward and downward
fluxes that can handle overlap. We show that, for clouds treated in three vertical regions,
low, middle, and high, this QMC approach yields reasonably accurate results for the
fluxes and heating rates. We further simplify each cloud block (low, middle, high) to
have a single cloud fraction and provide an algorithm to calculate it from the overlap
circumstances.

For subgrid cloud inhomogeneity at solar wavelengths, the use of the gamma
distribution of optical depth in radiative transfer cannot be simplified in the same way as
for the infrared due to the complications imposed by scattering. We therefore propose
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the use of an optical-depth adjustment algorithm. This approach is computationally fast
and so can be easily incorporated into the overlap scheme that was developed.

In summary, the new algorithm combines relaxed maximum random overlap,
scaling of the optical depth for cloud inhomogeneity, QMC approach for overlap,
and scaling of the cloud fraction within cloud blocks. This approach can produce
accurate results in heating rates and fluxes with relative errors generally less than
8%. Importantly, this accuracy is achieved at a computational expense that is quite
appropriate for GCMs. This radiative-transfer algorithm is available from the authors.
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APPENDIX A

Adding method for solar radiative transfer
We interpret the adding process for the radiative-transfer process (based on Coakley

et al. 1983) so as to make it easier for the reader to understand the cloud treatment
discussed in this paper. We find the description of the adding process in some previous
papers was not very clear, since the upward and downward reflection and transmission
for multiple layers were not written down specifically.

For each single layer i, the layer diffuse reflection ri and transmission t i are the
solution of the radiative-transfer equation with no direct solar source term.

ri = (u + 1)(u − 1)(eλτi − e−λτi )N−1, (A.1)

t i = 4uN−1 (A.2)

where

N = (u + 1)2 eλτi − (u − 1)2 e−λτi ,

u = 3
2

1 − ωigi

λ
,

λ = √
3(1 − ωi)(1 − ωigi),

with τi , ωi and gi being the optical depth, single scattering albedo and asymmetry factor
for layer i, respectively. The direct layer reflection ri(µ0) and direct layer transmission
ti (µ0) are the solution for the full radiative-transfer equation,

ri(µ0) = (α − γ )(ti e−τi/µ0 − 1) + (α + γ )ri, (A.3)

ti (µ0) = (α − γ )ri e−τi/µ0 + (α + γ )(ti − e−τi/µ0) + e−τi/µ0, (A.4)

where µ0 is the cosine of solar zenith angle and

α = 3
4ωiµ0

{
1 + gi(1 − ωi)

1 − λ2µ2
0

}
,

γ = 1
2ωi

{
1 + 3gi(1 − ωi)µ

2
0

1 − λ2µ2
0

}
.
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The reflectivity for diffuse radiation for an atmospheric slab extending from the
TOA to the level k is obtained through a downward path calculation as

R1,k = rk−1 + tk−1R1,k−1tk−1

1 − rk−1R1,k−1
, (A.5)

and the transmissivity for direct solar radiation is

T1,k(µ0) = e−τ1,k−1/µ0tk−1(µ0)

+ tk−1{T1,k−1(µ0) − e−τ1,k−1/µ0(1 − rk−1(µ0))}R1,k−1

1 − rk−1R1,k−1
,

(A.6)

where τ1,k−1 = ∑k−2
i=1 τi .

For an atmospheric slab extending from the surface to the level k, the reflectivities
for diffuse radiation (RN,k) and direct solar radiation (RN,k(µ0)) are obtained through
an upward path calculation as

RN,k = rk + tkRN,k+1tk

1 − rkRN,k+1
, (A.7)

RN,k(µ0) = rk(µ0) + tk{(tk(µ0) − e−τk/µ0)RN,k+1 + e−τk/µ0RN,k+1(µ0)}
1 − rkRN,k+1

. (A.8)

RN,N = RN,N(µ0) = surface albedo. Finally, the downward and upward fluxes at level
k are determined by the results from the downward and upward calculation paths as
follows:

F−
k = e−τ1,k/µ0 + T1,k(µ0) − e−τ1,k/µ0(1 − RN,k(µ0)R1,k)

1 − R1,kRN,k

, (A.9)

F+
k = (T1,k(µ0) − e−τ1,k/µ0)R1,k + e−τ1,k/µ0R1,k(µ0)

1 − R1,kRN,k

. (A.10)

REFERENCES

Barker, H. W. 1996 A parameterization for computing grid-averaged solar fluxes
for inhomogeneous marine boundary layer clouds. Part I:
Methodology, and homogeneous biases. J. Atmos. Sci., 53,
2298–2303

Barker, H. W., Stephens, G. L. and
Fu, Q

1999 The sensitivity of domain-averaged solar fluxes to assumptions
about cloud geometry. Q. J. R. Meteorol. Soc., 125, 2127–
2152

Bergman, J. W. and Rasch, P. J. 2002 Parameterizing vertically coherent cloud distributions. J. Atmos.
Sci., 59, 2165–2182

Cahalan, R. F., Ridgway, W.,
Wiscombe, W. J., Bell, T. L.
and Snider, J. B.

1994 The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51,
2434–2455

Coakley, J. A., Cess, R. D. and
Yurevich, F. B.

1983 The effect of tropospheric aerosols on the Earth’s radiation bud-
get: A parameterization for climate models. J. Atmos. Sci.,
40, 116–138

Collins, W. D. 2001 Parameterization of generalized cloud overlap for radiative trans-
fer calculations in general circulation models. J. Atmos. Sci.,
58, 3224–3242
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