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Abstract

A full vector radiative transfer model for vertically inhomogeneous plane–parallel media has been developed
by using the successive order of scattering approach. In this model, a fast analytical expansion of Fourier
decomposition is implemented and an exponent-linear assumption is used for vertical integration. An analytic
angular interpolation method of post-processing source function is also implemented to accurately interpolate
the Stokes vector at arbitrary angles for a given solution. It has been tested against the benchmarks for the case
of randomly orientated oblate spheroids, illustrating a good agreement for each stokes vector (within 0.01%).
Sensitivity tests have been conducted to illustrate the accuracy of vertical integration and angle interpolation
approaches. The contribution of each scattering order for di8erent optical depths and single scattering albedos
are also analyzed.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Polarimetric measurements of atmospheric radiation have been demonstrated signi<cant advantages
in retrieving atmospheric aerosol properties, determining size and shape of scattering particles, and
discriminating surface and atmospheric contributions [1–4]. These essential advantages are due to
polarization characteristics exhibited by radiation scattering by molecules and aerosol and cloud
particles, and also due to experimental merits for a relative measurement of polarization that could
achieve high accuracy (0.1% for the linear polarization). Observations of polarization of re@ected or
transmitted light from an atmosphere will provide additional constrains for interpreting photometric
measurements, and improve knowledge of the atmospheric constituents. Numerous instruments with
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polarization capability have been deployed on various platforms [5–11]. To fully exploit the potentials
of polarimetric measurements requires an accurate and fast vector radiative transfer model to interpret
observations and to retrieve atmospheric properties [12–14].

Several vector radiative transfer codes have been developed based on the adding–doubling method
[15,16]. Recently, an extension of the scalar discrete ordinate theory to solve the 4-vector problem
for the complete set of Stokes parameters has been reported [17,18]. However, these vector radiative
transfer codes do not separate the contribution of each scattering order, which will provide insights
of radiation absorption process when scattering evens take place. By computing the contribution of
each scattering order, the successive order of scattering (SOS) method is physically straightforward
and is easier to analyze the importance and characteristics of scattering–absorption processes. Since
the SOS method traces the photons for each scattering event, the inhomogeneous structure of the
medium as well as gaseous absorption process can be incorporated in the calculation in terms of
integration along the photon path [19]. Further, the SOS method is very helpful for parameterization
of radiative transfer for fast computation in remote sensing and global climate modeling. It is also
well known that the disadvantage of the SOS method is the substantial computation needed to
converge the intensity solution, particularly for an optically thick medium. However, we mostly deal
with polarization for aerosols and cirrus clouds that are normally optical thin. For applications to
simulate high resolution spectra of absorption bands, in particular, the single scattering albedo is low
for absorption lines and the SOS method needs only a few scattering orders to reach convergence.
Therefore, for simulating the polarization of radiative transfer in the atmosphere, the SOS method
may have substantial advantages over other methods. In this paper we develop a full vector radiative
transfer code for plane–parallel media using the successive order scattering method coupled with
discretization and interpolation principles. The detail description of the algorithm is given in Section
2. We modify the Fourier decomposition of scattering matrix developed by Siewert [20] to be
easily imbedded into a radiative transfer code. In Section 3, various tests and comparisons with the
benchmark are discussed.

2. Vector radiative transfer equation

Radiation can be fully described by Stokes parameters, Ĩ = [I; Q; U; V ]T. Its propagation and re-
distribution in plain parallel scattering and absorbing medium can be expressed as [21]
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d̃I(�; �; 	)

d�
= −̃I(�; �; 	) +

!
4�

∫ 2�

0

∫ 1

−1
M̃(�; �; ’; �′; 	′)̃I(�; �′; 	′) d�′ d	′

+
!
4�
F0 exp(−�=�0)M̃(�; �; 	;−�0; 	0)[1; 0; 0; 0]T

+ (1 − !)B(T )[1; 0; 0; 0]T; (1)

where � is the cosine of the polar angle, positive for downward and minus for upward, � is the
azimuth angle relative to the solar beam, � is the optical depth, ! is the single-scattering albedo,
F0 is the extraterrestrial solar incident @ux, �0 and 	0 are the cosine of the solar zenith and the
solar azimuth angle, respectively, B is the Planck function and M̃ is the phase matrix (Mueller
matrix) of scattering of 4×4 order. Superscript T represents the transpose of matrix. In Eq. (1), the
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second term is the contribution of multiple scattering, the third term is single scattering contribution
from light incident on the upper boundary, and the fourth is contribution of the thermal emission.
Based on the optical properties of media, one or more terms often can be ignored. In the visible
and near-infrared wavelength region, the fourth term is ignored. Further, the Mueller matrix M̃ is
obtained by rotational transform of the single-scattering phase matrix P̃

*
P =



a1 b1 0 0

b1 a2 0 0

0 0 a3 b2

0 0 −b2 a4


 : (2)

As discussed by van de Hulst [22], the phase matrix, which contains six real functions, has more
general applications including scattering by nonspherical particles [18].

For the radiative transfer in atmospheric application, the Stokes components I and Q of scattered
<eld are symmetric in 	− 	′; U and V are anti-symmetric in 	− 	′, therefore, the Stokes vector
Ĩ and Muller matrix M̃ can be decomposed as follow:

*
I =



I

Q

U

V


 =

2M∑
m=0



Im cosm(	− 	0)

Qm cosm(	− 	0)

Um sinm(	− 	0)

Vm sinm(	− 	0)


 ; (3)
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s

m sinm(	− 	′)]; (4)

where M̃c and M̃s stand for cosine mode and sine mode, respectively. For each Fourier component,
we have the radiative transfer equation in the same form as Eq. (1).

2.1. Algorithm for vector successive order of scattering (VSOS)

The SOS method is an integral solution approach to solve radiative transfer problems. It can be
directly applied to absorption medium to understand the absorption processes in terms of integration
along the line path when scattering events take place. To speed up the calculation, we compute the
successive scattering of each order based on discrete ordinate and interpolating over optical depth.
For the scattered radiation <eld, the summation of contributions of all scattering orders in each
Fourier component can be described as

Ĩ(�; �) =
N∑
n=1

Ĩn(�; �); (5)

where the subscription n stands for the scattering order, and the index N represents the maxi-
mum order of scattering events to archive the accuracy requirement. For each scattering order,
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we have
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For the SOS method, the greatest challenge is the vertical integration of source term, J, over optical
depth. Suitable approximations would allow larger optical depth for each vertical homogeneous layer
to speed up calculations. We approximate the source function by a linear-exponential function with
optical depth in the domain �i ¡ t¡�i+1.

*
J(�; �) = (a+ b�) exp(−��); (9)

where a; b, and � can be solved analytically with
*
J(�i; �);

*
J(�i+0:5; �) and

*
J(�i+1; �), and �i+0:5 =

(�i + �i+1)=2. The linear-exponential function approximation of source term has been proved to be
accurate and eLcient [23]. Given the above assumption, In+1 can be integrated analytically and
optical depth of each homogeneous layer can be relatively large. Therefore the computational time
is saved substantially. We have also implemented a quadratic approximation of source function
for integration over optical depth. Numerical simulations demonstrated that the linear–exponential
approximation is more accurate than the quadratic approximation.

Furthermore, in order to calculate the Stokes vector at arbitrary angles and optical depths for
a given vector solution at polar quadrature angles and vertical layers, we implement the angular
interpolation method of post-processing source function (PPSF) in this VSOS code [24]. For solution
at polar angle of �out, the source term for polar angle of �out can be written as

*
J

↑↓
n (�; �out) =

!
4

∫ 1

−1
M̃(�; �out; �′) Ĩ↑↓

n (�; �′) d�′: (10)

The source term of each successive order can then be integrated over optical depth as outline above
(Eq. (6)). Therefore, the stokes vector at additional angles can be generated in a cost-e8ective way,
and are more accurate than standard interpolation in the radiation intensity.

For the strong forward scattering media, the computational diLculties stem from the fact that
strongly asymmetric phase function cannot be represented by polynomials of low order. As a result
of increasing the number of streams for improving accuracy of calculation, the computational time
will increase exponentially and the calculations based on the SOS method become exorbitant for
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large optical depth cases. Taking advantage of the fact that the higher-order Legendre polynomial
expansion terms contribute primarily to forward peak, the delta-m method truncates the Legendre
polynomial to e8ectively remove the forward peak and has been proved to be a most reliable means
in @ux computations [25]. We implemented the delta-m transformation in our code to improve the
computation eLciency and accuracy and suppress the false oscillation [25,26]. For the full vector
radiative transfer algorithm (see Appendix A),

�∗
il = (�il − f)=(1 − f);

�∗
il = �il=(1 − f);

�∗ = (1 − f!)�;

!∗ = (1 − f)!=(1 − f!): (11)

After delta-m transformation from �; �; !; � to �∗; �∗; !∗; �∗, the radiative transfer equation is the
same as the original one with reduced forward scatterings.

2.2. Fourier decomposition of the phase matrix

Siewert [20] developed an eLcient method for the Fourier components of the phase matrix, such
that the components in a Fourier decomposition of the phase matrix could be expressed analytically
in the basis of generalized spherical functions. The numerical implementation simply relies on a
few recursive relations for the generalized spherical function. This method has been successfully
implemented into various vector radiative transfer codes [16,18]. The accuracy and eLcient of this
expansion method has been tested in detail by De Haan et al. [16]. We adopted this method in the
VSOS algorithm, and brie@y sketch it here. For both M̃c

m and M̃s
m can be written as

Mc
m(�; �

′) = Am(�; �′) +DAm(�; �′)D; (12a)

Ms
m(�; �

′) = Am(�; �′)D − DAm(�; �′) (12b)

with

Am(�; �′) =
L∑

‘=m

(2‘ + 1)Pm‘ (�)B‘P
m
‘ (�

′); (13)

D= diag{1; 1;−1;−1}; (14)

Pm‘ (�) =




P̃m‘ (�) 0 0 0

0 R̃m‘ (�) −T̃ m‘ (�) 0

0 −T̃ m‘ (�) R̃m‘ (�) 0

0 0 0 P̃m‘ (�)


 ; (15)
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B‘ =



�1 �1 0 0

�1 �2 0 0

0 0 �3 �2

0 0 −�2 �4


 ; (16)

where P̃m‘ (�); R̃
m
‘ (�) and T̃ m‘ (�) are normalized functions of Pm‘ (�); R

m
‘ (�) and Tm‘ (�), respec-

tively, by
√

(‘ − m)!=(‘ + m)!. Pm‘ (�) is the associate Legendre polynomial, Rm‘ (�) and Tm‘ (�) are
generalized spherical functions, and given by

Rm‘ = − 1
2 (i)

m[P‘m;2(�) + P‘m;−2(�)]; (17)

Tm‘ = − 1
2 (i)

m[P‘m;2(�) − P‘m;−2(�)]; (18)

where P‘m;n(�) is the generalized spherical function

P‘m;n(�) =
(−1)‘−m(i)n−m

2‘(‘ − m)!
(1 − �)−(n−m)=2(1 + �)−(n+m)=2 d‘−n

d�‘−n
[(1 − �)(‘−m)(1 + �)(‘+m)]: (19)

Furthermore, P̃m‘ (�); R̃
m
‘ (�) and T̃ m‘ (�) can be derived by recursion relations√

[(‘ + 1)2 − m2]P̃m‘+1 = (2‘ + 1)�P̃m‘ −
√

(‘2 − m2)P̃m‘−1; (20a)

√
[(‘ + 1)2 − m2][(‘ + 1)2 − 4]

(‘ + 1)
R̃m‘+1 = (2‘ + 1)

[
�R̃m‘ − 2m

‘(‘ + 1)
T̃ m‘

]

−
√

(‘2 − m2)(‘2 − 4)
‘

R̃m‘−1; (20b)

√
[(‘ + 1)2 − m2][(‘ + 1)2 − 4]

(‘ + 1)
T̃ m‘+1 = (2‘ + 1)

[
�T̃m‘ − 2m

‘(‘ + 1)
R̃m‘

]

−
√

(‘2 − m2)(‘2 − 4)
‘

T̃m‘−1 (20c)

with the initialization of

P̃mm(�) =

√
(2m− 1)!!
(2m)!!

(1 − �2)m=2; (21a)
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R̃mm(�) =

√
m(m− 1)

(m+ 1)(m+ 2)
(1 + �2)
(1 − �2)

P̃mm(�) for m¿ 2;

R̃1
1 = 0; R̃1

2 = −�
2

√
(1 − �2) for m= 1;

R̃0
0 = 0; R̃0

1 = 0 R̃0
2 = −

√
6
4

(1 − �2) for m= 0; (21b)

T̃ mm(�) =

√
m(m− 1)

(m+ 1)(m+ 2)
2�

(1 − �2)
P̃mm(�) for m¿ 2;

T̃ 1
1 = 0; T̃ 1

2 = −1
2

√
(1 − �2) for m= 1;

T̃ 0
0 = 0; T̃ 0

1 = 0; T̃ 0
2 = 0 for m= 0: (21c)

The expansion coeLcients in the matrix B are, then, determined by the following integrations:

�‘1 =
1
2

∫ 1

−1
a1(�)P‘(�) d�; (22a)

�‘2 =
1
2

∫ 1

−1
[a2(�)R̃2

‘(�) + a3(�)T̃ 2
‘(�)] d�; (22b)

�‘3 =
1
2

∫ 1

−1
[a3(�)R̃2

‘(�) + a2(�)T̃ 2
‘(�)] d�; (22c)

�‘4 =
1
2

∫ 1

−1
a4(�)P‘(�) d�; (22d)

�‘1 =
1
2

∫ 1

−1
b1(�)P̃2

‘(�) d�; (22e)

�‘2 =
1
2

∫ 1

−1
b2(�)P̃2

‘(�) d�: (22f)

As derived by Hovenier [27] and discussed by Siewert [20], there are two basic symmetry relations

M̃(�; �i; �j) =D1M̃(�; �j; �i)D1; (23a)

M̃(�;−�i;−�j) =DM̃(�; �i; �j)D; (23b)
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where

D1 = diag{1; 1; 1;−1}: (24)

Based on above two basic symmetry relations, we can further derive the third useful symmetry
relation that can simplify the implementation, and reduce the needs for calculating the elements of
the phase matrix in another half.

M̃(�; �i;−�j) =D1M̃(�;−�j; �i)D1 =D1DM̃(�; �j;−�i)DD1 =D2M̃(�; �j;−�i)D2 (25)

with

D2 = diag{1; 1;−1; 1}: (26)

3. Numeric tests and comparisons

To test our VSOS code, we computed Stokes components of I; Q; U , and V for several values of
polar angle, azimuth angle and optical depth and compared with the benchmark results published in
the literature [28]. We show one case of a homogeneous atmosphere of randomly orientated oblate
spheroids with aspect ratio of 1.999987, size parameter of 3.0, and refractive index of 1:53− 0:006i.
The single scattering albedo derived for this case is 0.975235 [29]. The total optical depth of the
atmosphere is 1 with an underlying black surface. Our VSOS results are calculated using 32 streams
in polar angle and 10 layers for the solar zenith angle of 50◦. Fig. 1 shows stokes components of
I; Q, and U , and degree of polarization as a function of polar angle at the top and at the bottom
of the atmosphere. The solid and dashed lines represent results of the SOS model for downward
radiation at the bottom of the atmosphere and upward radiation at the TOA, respectively; and the
open circles represent the benchmark results. The agreement is excellent, and the accuracy is within
0.01%. Further extensive comparisons with the PolRadtran code developed by Evans and Stephens
[15] are conducted for Mie scattering atmosphere (not shown here). The VSOS results agree well
with the PolRadtran code.

The accuracy of the VSOS model depends on numbers of vertical layer and streams in angular
quadrature, as well as orders of scattering. The smaller optical depth in each vertical layer and
larger streams for angular quadrature will result in the higher accuracy, but at the expense of the
computational speed. To speed up the calculation, we solve the successive scattering <eld based
on discrete ordinate in angular coordinates and a linear-exponential approximation in optical depth.
It is necessary to <nd the accuracy of integration over optical depth and interpolation in angle by
conducting extensive numerical tests. We compute the benchmark stokes vector, represented as “true”
in the following <gures, with 32 streams and 0.01 optical depth for each layer. The total optical
depth of the simulation slab is 1, the underlying surface is assumed to be black (albedo=0). A Mie
scattering phase function was used in the simulation. In the following discussion, we normalize the
intensity, I , by a fact of �=�0F0, and de<ne the polarization, P, as

√
Q2 + U 2=I .

First we test the linear–exponential approximation for di8erent optical depths of a homogeneous
layer to <gure out the optimal optical depth for vertical integration. Fig. 2 shows di8erences of
radiance and degree of polarization reaching at the TOA and at the surface for four di8erent optical
depths of vertical homogeneous layer. Since the di8erence of degree of polarization is very small, we
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Fig. 1. Stokes parameters of I; Q, and U , and degree of polarization at the TOA (solid line) and at the bottom of the
atmosphere (dashed line), open circles are benchmark.

multiply it by 100 as shown in the <gures. In Fig. 2, the negative and positive cosine polar angles
represent upward radiation at the TOA and downward radiation at the surface. As we expected,
the accuracy of solution increases with increasing numbers of layer or decreasing optical depth of
homogeneous layer for all sets of single scattering albedo. Di8erences of both radiance and degree
of polarization decrease with decreasing of single scattering albedo in the atmosphere for a given
optical depth of vertical homogeneous layer, since an increasing portion of photons that are absorbed
in the atmosphere and do not participate in higher order scattering evens. For the worst scenario case
with conservative scattering ($=1), shown in the top panels of Fig. 2, the maximum di8erences of
radiance are 0.050%, 0.226%, 0.760%, and 2.238% for layer optical depths of 0.05, 0.1, 0.2, and 0.5,
respectively. The maximum di8erences in degree of polarization are 0.00005, 0.00023, 0.00079, and
0.00266 for layer optical depths of 0.05, 0.1, 0.2, and 0.5, respectively. Based on current limitations
of instrument capability, we set criteria of solution accuracy for radiance and degree of polarization
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Fig. 2. Di8erence of upward radiance and degree of polarization at top of atmosphere and downward radiance and degree
of polarization at surface.
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Fig. 3. Computed radiances and degrees of polarization at di8erent optical depths with two interpolation methods.

as 1% and 0.1%, respectively. Therefore, optical depth of 0.2 is the optimal value for the VSOS
integration over a homogeneous layer based on the linear–exponential approximation.

We further compare the PPSF analytic approach against a straightforward quadratic method for
interpolating the angular distribution in the VSOS model. Fig. 3 shows computed radiances and
degrees of polarization based on the PPSF approach and quadratic interpolations as a function of
polar angle at the TOA and at the bottom of the atmosphere. Radiance and degree of polarization
computed with 8-steam based on the PPSF approach agree well the benchmark (32-stream). The
di8erence is less than 1%, which cannot be distinguished in the <gure. The calculation for 8-stream
takes, however, about a tenth of computational time for 32-stream. The superior agreement between
8-stream and 32-stream calculations of the VSOS model is due to: (1) the <rst-order scattering
contributions of both cases are exact solutions without any interpolating, since J0 is the same for
both cases as the contribution of the direct beam of the sun; (2) the <rst-order scattering contributes
signi<cant portion of radiances and of degree of polarization (more discussion below); (3) the
asymmetry factor is small: g = 0:54, therefore the di8erence between base solutions for both cases
are relatively small (less than 0.2%). It demonstrates the advantage of the VSOS model on dealing
with angular interpolation, such as simulating nadir or zenith observations. On the other hand, results
based on quadratic interpolation show signi<cant errors, particularly for cosine polar angles near ±1.
The results are consistent with the <nding of Schultz and Stamnes [24].

The delta-m method transformation e8ectively removes the forward scattering, improving the com-
putation eLciency. Fig. 4 show the comparison of Stokes parameters of I; Q, and U , and degree of
polarization for delta-m transformation with 8, 12 and 16 streams. The atmospheric conditions are
the same as previous case. The maximum di8erences of radiance between benchmark (64 streams
without delta-m) and 8, 12, and 16 streams with delta-m are 8.25%, 1.649%, and 0.29%, respec-
tively. The di8erences of polarization are even smaller, 3.127%, 0.238%, and 0.054% for 8, 12, and
16 streams with delta-m, respectively. As we expected, the upward @uxes at the TOA agree well:
0.71123, 0.71166, 0.71163, and 0.71161 for 8, 12, and 16 streams with delta-m and 64 streams
without delta-m, respectively.
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Fig. 4. Comparisons of Stokes parameters of I; Q, and U , and degree of polarization for delta-m of 8, 12 and 16 streams.

The most important issue for the SOS method is the convergence of the successive orders of
scattering. Furthermore, the contribution of di8erence scattering orders will provide insight into the
mechanisms of the scattering–absorption process. To reveal the consequence of scattering–absorption
in the atmosphere and convergence of the VSOS model, we compute both radiance and degree of
polarization for upward radiance at the TOA and downward radiance at the surface for conservative,
modest and strong absorbed media with single scattering albedos of 1, 0.5 and 0.1, respectively. The
optical properties are the same as in previous test cases. Fig. 5 shows cumulative contributions from
various scattering orders. For conservative scattering condition, $ = 1, both radiance and degree of
polarization converge when the order of scattering reaches about 10. However, for absorbed cases
the convergence can be reached in 5 and 3 scattering orders for single scattering albedos of 0.5 and
0.1, respectively. Contributions of the <rst scattering to the total radiance are about 28%, 50%, and
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Fig. 5. Cumulative contributions from various scattering orders for three single scattering albedos of 1, 0.5, and 0.1. Solid
line represents I and corresponds to the left axis and dashed line represents P and corresponds to the right axis.
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95% of total radiance for single scattering albedos of 1, 0.5 and 0.1, respectively. It illustrates that
we only need to accurately calculate the <rst one or two scattering orders with a simpli<ed approach
to deal with higher orders of scattering to speed up calculation for absorbing atmosphere.

4. Summary

Numerous instruments with polarization capability have been deployed on various platforms in
retrieving atmospheric aerosol properties, determining size and shape of scattering particles, and
discriminating surface and atmospheric contributions [5–11]. Almost all retrieval algorithms depend
on a full calculation of radiation transfer in one way or another. To fully exploit the potentials
of polarimetric measurements requires an accurate and fast vector radiative transfer model to inter-
pret observations and for retrievals of atmospheric properties. Taking advantage of straightforward
physics of the SOS method, we have developed a full vector radiative transfer model for vertically
inhomogeneous plane–parallel media. To overcome issues of computational burden of convergence
of the SOS method, we solved the successive scattering <eld based on discrete angular ordinates
and a linear–exponential approximation in optical depth. We implemented a fast and accurately an-
alytical expansion of Fourier decomposition, and used an analytic angular interpolation method of
post-processing source function to accurately interpolate the Stokes vector at arbitrary angles for a
given solution. It has been tested against the benchmarks for the case of randomly orientated oblate
spheroids, illustrating a good agreement for each Stokes vector (0.01%). Sensitivity tests have been
conducted to illustrate the accuracy of vertical integration and angle interpolation approaches. The
optimal optical depth of homogeneous layer of about 0.2 for vertical integration will satisfy the
need of accuracy of vector radiative transfer for current instrumental capability. Since the VSOS
model explicitly separates the contribution of each scattering order, it has demonstrated the advan-
tage on dealing with angular interpolation, such as simulating nadir or zenith observations using a
few number of streams. Since the SOS method traces the photons for each scattering event, the
inhomogeneous structure of the medium as well as gaseous absorption process can be incorporated
in the calculation in terms of integration along the photon path. Further, it is very helpful for param-
eterization of radiative transfer for fast computation in remote sensing and global climate modeling.
Sensitivity study also show that contributions of the <rst scattering to the total radiance are about
28%, 50%, and 95% of total radiance for single scattering albedos of 1, 0.5 and 0.1, respectively.
It illustrates that we only need to accurately calculate the <rst one or two scattering orders with a
simpli<ed approach to deal with higher orders of scattering to speed up calculation for absorbing
atmosphere, particularly for simulating gaseous absorption bands such as oxygen A-band and water
vapor bands.
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Appendix A. 	-M transformation

Vector radiative transfer equation can be written as

�
d̃I(�; �; 	)

d�
= −̃I(�; �; 	) +

!
4�

∫ 2�

0

∫ 1

−1
M̃(�; �; 	; �′; 	′)̃I(�; �′; 	′) d�′ d	′; (A.1)

where

M̃ =
*
L(�− i2)

*
P())

*
L(−i1); (A.2)

where
*
P is the single scattering matrix

P̃()) =



a1 b1 0 0

b1 a2 0 0

0 0 a3 b2

0 0 −b2 a4


 : (A.3)

L is the rotation matrix de<ned as (Liou, 1980)

L̃(*) =



1 0 0 0

0 cos 2* sin 2* 0

0 −sin 2* cos 2* 0

0 0 0 1


 : (A.4)

Based on delta-m transformation, the scattering matrix can be replaced by the summation of a delta
function for the forward peak and a smoothed function,

*
P(�; �; �′) = 2f�(1 − cos()))

*
E + (1 − f)

*
P

∗
; (A.5)

where f = �1;2M ;
*
E = diag{1; 1; 1; 1}, *P

∗
has the same form of Eq. (A.3). Substituting Eq. (A.5)

into Eq. (A.1), we have

�
d
+
I (�; �; ’)

d�
=−(1 − f!)

*
I (�; �; ’)

+ (1 − f)
!
4�

∫ 2�

0

∫ 1

−1
M̃∗(�; �; ’; �′; ’′)̃I(�; �′; ’′) d�′ d’′; (A.6)

where

M̃∗ =
*
L(�− i2)

*
P

∗
())

*
L(−i1): (A.7)

If we de<ne

�∗ = (1 − f!)�;

!∗ = (1 − f)!=(1 − f!): (A.8)
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Eq. (A.8) has been transformed to

�
d̃I(�∗; �; ’)

d�∗
= −*

I (�∗; �; ’) +
!∗

4�

∫ 2�

0

∫ 1

−1
M̃∗(�∗; �; ’; �′; ’′)̃I(�∗; �′; ’′) d�′ d’′: (A.9)

Eq. (A.9) has the same form as Eq. (A.1). In Eqs. (A.1) and (A.9), the coeLcients of ai; bi; a∗
i ; b

∗
i

and � function can be expanded as spherical polynomials

ai =
2M−1∑
‘=0

(2‘ + 1)�i‘,il; i = 1; 2; 3; 4;

bi =
2M−1∑
‘=0

(2‘ + 1)�i‘P̃2
‘; i = 1; 2; (A.10)

a∗
i =

2M−1∑
‘=0

(2‘ + 1)�∗
i‘,i‘; i = 1; 2; 3; 4;

b∗
i =

2M−1∑
‘=0

(2‘ + 1)�∗
i‘P̃

2
‘; i = 1; 2; (A.11)

�(1 − cos()))
*
E =

1
2

2M−1∑
‘=0

(2‘ + 1) diag{,1‘; ,2‘; ,3‘; ,4‘}; (A.12)

where ,i‘ is P‘; (R̃2
‘ + T̃ 2

‘); (R̃
2
‘ + T̃ 2

‘) and P‘ for i = 1; 2; 3, and 4, respectively. Substituting above
three equations into Eq. (A.5), the expanded coeLcients after transformation can be given as

�∗
i‘ = (�i‘ − f)=(1 − f); i = 1; 2; 3; 4;

�∗
i‘ = �i‘=(1 − f); i = 1; 2: (A.13)
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