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An adjoint formulation of the radiative transfer method

Qilong Min and Lee C. Harrison
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Abstract. Radiative transfer problems may be solved “adjointly” from an observed
excident radiance flux distribution backward to the incident fluxes. We describe an
adjoint formulation based on the discrete ordinate radiative transfer method, with
application to atmospheric radiative transfer, including effects of the surface albedo.
We compare this adjoint approach with forward radiative transfer solutions for a set
of synthetic cases and also with observed surface irradiance data from a multifilter
rotating shadow band radiometer (MFRSR). We compute the irradiances and mean
intensities at arbitrary altitudes for fixed sky conditions but varying solar zenith

angles. For these cases the adjoint method is comparably accurate and markedly

faster.

Introduction

Radiative transfer computations are extremely time
consuming. However, for certain applications where the
forward approach is inefficient, one can employ an ad-
joint method for radiative transfer to reduce compu-
tational cost [Bell and Glasstone, 1970; Cacuci, 1981;
Gerstl, 1982]. Unlike forward radiative transfer meth-
ods, which consider every photon, adjoint methods trace
backward only those photons received by the observer
or the response. In cases where many rhotons are scat-
tered away from the observer adjoint methods may save
significant computation time. In the sections that follow
we compare forward and adjoint formulations of radia-
tive transfer equations, the adjoint operator, boundary
conditions, and applications of the adjoint method to
three synthetic model atmospheres and to real surface
radiance measurements from a rotating shadow band
radiometer.

Adjoint Formulation of the Radiative
Transfer Equation
The Forward Radiative Transfer Equation

The radiative transfer equations in plane parallel ge-
ometry may be written as follows:
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with homogeneous boundary conditions, where I%7(z,Q)
and I%/(z,Q) are the direct radiation and diffuse or
scattered radiation, respectively. Both are a function of
geometric altitude, z, cosine zenith angle, p, direction,
Q, and the wavelength, A. Here, p(z,Q’ — Q) is a phase
function from an incident solid angle, ', into the exci-
dent angle, . The last term in (1) is a pseudo-source
of direct beam due to a parallel beam of sunlight with
flux F* normal to the beam direction 6 = cos™! yo.
AlSO, ﬁezt — ﬂsca +ﬂabs’ and ﬂab", ﬂsca’ and 'Bea:t are
the absorption, scattering, and extinction coefficients,
respectively.

The direct radiation can be solved easily. Therefore
we only discuss how to use the adjoint formulation of
the radiative transfer problem, and a method of compu-
tational implementation to solve for scattered radiation.
This equation may be written as LI(z,Q) = Q(z,Q). L
is an integral differential operator

L(z,Q) = d est _ P77 dQ'p(z,Q — Q) (2

(2, )—pd—z+ﬂ _V/“ p(z, ¥ — Q) (2)
and Q(z,Q) is a specified source.
The General Formulation of the Adjoint Method

In general, we consider a physical system governed
by the equation

L(p)I(p) = Q(p) (3)

with an appropriate boundary condition, where L is a
linear operator, I is a distribution function, Q is a fixed
source, and p represents all independent variables.

To obtain more accurate and efficient solutions of
some integral property

Glll=<X%,I>

where brackets and angles represent functional relation
and inner product, respectively, and ¥ is the operator
for a response function, we construct a variational prin-

ciple for G[I] =< £,I >
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F[I',1] = GU+<I",(Q-LI)>
= <II>+<I"'(Q@-LI)>
where I* is an arbitrary function to be defined below.
The requirements that must be satisfied in order that F'
be a variational principle for G are as follows: (1) F'is
stationary about the function I which satisfies equation
(3), and (2) the stationary value of F is G[I] =< £, I >.
In the Hilbert space, the adjoint operator L* is de-

fined by
<I'LI>=< L*'I*,I > 4)

Therefore

6F = < 8I>+<I"6(Q-LI)>

+<éI,(Q@-LI) >

= <X,8I>—-<L'I*éI)>
+<6I",(Q-LI)>

= 0

For arbitrary 6I and 6I* leads to the requirement

LI =Q
(5)

L'r =x

Clearly I satisfies equation (3). Equation (5) specifies
the adjoint function I* for a particular source ¥ given
a function of G[I] =< X,I >. Making use of (5), it is
apparent that

F[I*, 1] <z I>
<L*r 1>
<I*,LI>
<I', Q>

(6)

Thus F is a variational principle for < ¥,I >. The ad-
vantage of an adjoint method to evaluate the integral
property is demonstrated in (6). To calculate the ra-
diative effects of m different sources, we must solve the
forward radiative transfer equation m times. With the
adjoint method, however, a radiative transfer equation
set is solved only once, and the radiative effects of m
different sources then require only m inner products.

Adjoint Operator for Radiative Transfer and
Boundary Conditions

From (4) with appropriate boundary conditions to be
discussed below, we may define the adjoint operator for
the radiative transfer equation (e.g., equation (2)) as

.8
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sca

L*(Z,Q) — + Be:z:t

dVp(z, - — -Q) (7)

T Jan

L(za—Q)

I

MIN AND HARRISON: ADJOINT FORMULATION OF RADIATIVE TRANSFER METHOD

We note that the forward and adjoint operators differ
only in the sign of Q. With this insight, the computa-
tion methods for the adjoint radiative equation can be
developed by using the computation methods for the
forward radiative transfer equation with some modifi-
cations. Now we consider the function

I'(2,Q) = I*(2,-Q) (8)
then
L*(z,Q)I*(2,Q) = L(z,-Q)'(2, Q) = £(2,Q)
Changing the variables from Q to —2, then
LI'(2,Q) = £(z,-Q) 9)

Thus we see that I'(z,Q) is the forward radiance
due to the source X(z, —2), and subject to appropriate
boundary conditions. Hence to determine the adjoint
radiance due to an adjoint source X(z,Q), we first solve
the forward radiative transfer equation for a “pseudo-
source” X(z,—) to compute the “pseudo-radiance” I'.
Finally, the adjoint radiance I* is obtained from I’ via
(8).

The reflection from the lower boundary of the atmo-
sphere, the surface of the Earth, is important in most
atmospheric radiative transfer calculations. The solu-
tion to a Lambertian surface with albedo A can be
constructed from the solutions to two standard prob-
lems with no ground reflection (vacuum boundary con-
ditions) according to

A
I(Z, Q) = IU(Z, Q) + Fv(O)mI,(Z, Q)
where I, is the solution of standard problem for the
given source, and F,(0) is the downward flux at the
lower boundary. I, is the solution to a problem of col-
limated illumination from the bottom,

2% 0
§=/ d¢/_1dﬂ|ulls(0,9) (12)

where U is a step function and é is the Dirac delta
function [Liou, 1980]. Therefore we only need to discuss
the boundary condition of adjoint radiance with respect
to vacuum boundary conditions.

The vacuum boundary conditions for the forward ra-
diance are

I(ZT3/‘1¢) =0

(10)

(11)

and

for —-1<u<0

(13)

for

I(0,p,6) = 0 O<p<l

where 27 denotes the altitude of the top of the atmo-
sphere. Because the forward radiance must satisfy the
boundary conditions of (13), the requirement that both
the forward and adjoint radiances must satisfy (4) be-
comes
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2r 1
/ qu/ dppI* (zp, Q)I(z1,Q)

2 0
- / do / dupl*(0,D10,Q)  (14)
4 -1
Now I(z,Q) and I*(z,Q) are both completely arbitrary
and independent functions of z and px. Thus the only
way to ensure that (14) is satisfied is to require

I'(zr,m¢) = 0 for 0<p<l

(15)

I'O,p,é) = 0 for —-1<pu<0

That is to say, it requires no outgoing adjoint radiance,
in contrast with no incoming forward radiance.

In general, the forward radiative transfer method
starts with a stream of photons and traces their progress
through a scattering-absorptive medium. An observer
looking backward through the medium does not detect
the photons that are absorbed, or those that are scat-
tered beyond his instrumental acceptance angle, so that
he may not be able to use information carried by these
“lost” photons to deduce the properties of the scattering
medium. This means that much of the effort expended
in tracing these photons is wasted. For such cases ad-
joint radiative transfer methods, which trace the arriv-
ing photons backward through the medium, may have
computational economies and comparable numerical ac-
curacy.

One common case where this occurs is the computa-
tion of surface-based solar irradiance as a function of
solar zenith angle. In this case, and generally when the
number of input parameters (or sources) exceeds the
number of different responses of interest, adjoint meth-
ods are significantly more efficient than the traditional
forward approach.

Application of the Adjoint Formulation
of a Discrete Ordinate Method

Radiative transfer problems can be solved with a va-
riety of techniques [Stamnes, 1986]. We adopt a discrete
ordinate method as efficient and reliable [Stamnes et al.,
1988]. The implementation includes all orders of multi-
ple scattering and is valid for vertically inhomogeneous,
nonisothermal, plane-parallel media. The atmosphere
is divided into a series of homogeneous layers in which
the scattering and absorbing properties are taken to be
constant within each layer, but allowed to vary from
layer to layer.

By appealing to the reciprocity principle, Stamnes
[1982] showed that the boundary irradiance for colli-
mated beam illumination is proportional to the exit an-
gular intensity for uniform illumination. Thus by ap-
plying a uniform illumination to the top of the slab
(and also from the bottom if it is vertically inhomoge-
neous), one may obtain boundary irradiance from all
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desired solar zenith angles. However, it does not ap-
pear possible to compute irradiance or mean intensity
at arbitrary altitudes. Here we consider specifically the
adjoint method for solving the downward irradiance at
an arbitrary altitude. Other problems may be handled
in an analogous manner. The response function of the
downward diffuse flux at altitude of zg, that is, adjoint
source X, is

I=|p]é(z—2)U(-p) (16)

The adjoint problem may then be solved using the
angle-reversing procedures derived in the last section,

LI' = pU(u)é(z - z0)
I,(ZT)/J’¢) =0 for -1 Sp< 0 (17)
r'o,u¢) = 0 for 0<p<l1

This is a standard radiative transfer equation with
no ground reflection, and it is apparently identical to
(11) when z, is zero. However, the “pseudo-source” in
this equation is an anisotropic source, which requires us
to modify the standard methods to handle an arbitrary
anisotropic source [Min et al., 1993]. Solving (17), we
can evaluate the downward flux, F4(20), for any given
surface albedo and solar zenith angle via (6), (8), and
(10) as

SCa s
Fi(20) =< I'(2,Q), é—a;lf—p(z, Qo — Q)e‘T/”" >
(18)

In the future we hope to present a perturbation tech-
nique based on the adjoint formulation, which provides
accurate estimates of radiative effects (L+6L) as well as
the derivatives of radiative properties for climate mod-
eling and remote sensing, once the value of the effect is
known for a “similar” model atmosphere (L).

Tests of Synthetic Cases

To validate our adjoint method, we compared the
downward diffuse fluxes (wm~2nm~') and the mean
intensities at multiple altitudes calculated by both for-
ward and adjoint methods for six synthetic cases. All
the calculations, except the fifth case, were computed
with four streams.

Case 1, a cloud free sky, was tested by adopting the
midlatitude winter model of Air Force Geophysics Lab-
oratory (AFGL) as the atmospheric gases [Anderson et
al., 1986] and the aerosol model from MODTRAN 2
[Berk et al.,, 1989]. Figure 1 shows the downward dif-
fuse fluxes calculated by the forward and adjoint at 415
nm for solar zenith angle from 0° to 80° at altitudes of
0, 1, 5, and 10 km. The background fall-winter aerosol
was specified to give a visibility of 50 km, and the sur-
face albedo was assumed to be 0.5. The differences be-
tween two methods are less than 0.08%, too small to be
distinguished in the upper panel of Figure 1.

Case 2 considered water droplet clouds at three op-
tical depths. The optical properties of water cloud are
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Figure 1. Case 1: Calculated downward fluxes at 415
nm at different altitudes from 0° to 80° solar zenith an-
gles by using the adjoint and forward methods for the
aerosols with the surface albedo of 0.5, and the differ-
ences between two methods.

adopted from Hu and Stamnes [1993]. Figure 2 shows
the comparison between two methods at a wavelength
of 415 nm for a water cloud layer inserted between 1 and
2 km with different optical depths of 0.3, 3, and 30, rep-
resenting a thin cloud, moderate cloud, and thick cloud,
respectively. The optical depths of cloud were obtained
by assuming an effective droplet radius of 10 ym and
adjusting the liquid water content of the cloud. These
comparisons have been carried for solar zenith angles
from 0° to 80°, with a Lambertian surface albedo of
0.5. The adjoint method shows accuracy comparable to
that of the forward method: both results are indistin-
guishable in Figure 2 (upper panel), and the differences
between two methods are less than 0.08 % (lower panel).

Case 3 compared the results from both methods at
500 nm with a cirrus cloud layer between 11 and 12
km at three different altitudes: at the surface, below

Fluxes
02 04 06 08 1.0 1.2 1.4

0.05

Difierence (%)

-0.10

[ 20 40 60 80
Solar Zenith Angle

Figure 2. Case 2: Calculated downward fluxes at 415
nm from 0° to 80° solar zenith angles by using the ad-
Jjoint and forward methods for three water cloud cases
with different optical depths: 0.3, 3.0, and 30, and the
differences between two methods.
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Figure 3. Case 3: Calculated downward fluxes at 500
nm at three different altitudes from 0° to 80° solar
zenith angles by using the adjoint and forward meth-
ods for the cirrus cloud with the surface albedo of 0.5
and the differences between two methods.

the cloud, and above the cloud. The optical properties
of cirrus cloud are adopted from MODTRAN 2 [Berk
et al, 1989]. The results, shown in Figure 3, again
illustrate very small differences.

Case 4 tested the accuracy of our adjoint method
by varying the surface albedo: 0.1, 0.5, and 0.9. The
downward diffuse fluxes at 415 nm were computed by
using both methods with a moderate cloud layer that
was placed between 1 and 2 km with a optical depth
of 3, shown in Figure 4. As the optical depth in-
creases the scattered irradiance is increasingly sensitive
to the surface albedo. The higher surface albedo results
in a larger downward diffuse flux. These comparisons
demonstrate that the adjoint method agrees very well
with the forward method for large surface albedos.

Further, in case 5, we tested our model varying the
number of streams. The downward fluxes at 500 nm
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Figure 4. Case 4: Calculated downward fluxes at 415
nm from 0° to 80° solar zenith angles by using the ad-
joint method and forward method and the differences
for the water cloud cases with three different surface
albedos: 0.1, 0.5 and 0.9.
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Figure 5. Case 5: Calculated downward fluxes at 500
nm and comparisons between the adjoint method and
forward method for different streams: 4 and 16 from 0°
to 80° solar zenith angles.

have been calculated by using both forward and adjoint
methods with 4 and 16 streams for a clear sky case.
In these cases, a surface albedo of 0.5 was assumed.
The adjoint method agrees very well with the forward
method, as shown in Figure 5. The difference is less
than 0.1% for these cases. Figure 5 also illustrates that
the accuracy of the adjoint method is equal to that of
the forward method, because the adjoint radiance is
computed by using the angle-reversing procedure of the
forward method.

The mean intensity or “actinic flux” is the quantity of
interest when calculating photolysis rates and UV doses.
There is a need for fast computation of these quantities
in photochemical modeling and also in the biological
community concerned with UV dose assessments. Fi-
nally, in case 6, we applied our adjoint method to eval-
uate the mean intensity and compared with the forward
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Figure 6. Case 6: Calculated mean intensities at 415
nm and comparisons between the adjoint method and
forward method for five different altitudes: 0, 1, 5, 10,
and 20 km from 0° to 80° solar zenith angles.
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Figure 7. (top) Measured and calculated fluxes at 415,
500, 610, and 665 nm from 55° to 75° solar zenith an-
gle: numbers of 1, 2, 3, and 4 representing the observed
data for wavelengths at 415, 500, 610, and 665, respec-
tively; solid line representing the results by the forward
method; dotted line representing the results by the ad-
joint method. (bottom) The differences between the
forward and adjoint methods.

method for five altitudes: 0, 1, 5, 10, 20 km. The adjoint
source for an arbitrary altitude is ¥ = 8(z — 20). Solv-
ing the adjoint radiative equation once, we can compute
the mean intensity for all desired solar zenith angles at
altitude zo by taking inner products. The atmospheric
conditions in this case is the same as discussed in case
1. The accuracy of the adjoint method has illustrated
in Figure 6. The differences between two methods are
less than 0.15% everywhere.

Comparison Against Real Measurements

A multiple filter rotating shadow band radiometer
(MFRSR), developed by Harrison et al. [1994], per-
mits a single sensor at each wavelength to acquire the
total horizontal, diffuse horizontal, and direct normal
spectral irradiance. This geometry guarantees that the
calibration coefficients are identical for each irradiance
component, which eliminates the uncertainty associ-
ated with intercomparisons of solar component mea-
surements made with separate sensors. The direct and
diffuse components contain all the information about
the atmospheric effects, as they penetrate through the
atmosphere. Therefore this ratio is insensitive to the
calibration error, but it depends sensitively upon such
interesting characteristics as atmospheric aerosol load-
ing, ground albedo, sky cover, and the vertical distribu-
tion of ozone [Chai and Green, 1976; King and Herman,
1979; Frederick et al., 1989; Zeng et al., 1994], and also
provides a method of evaluating model performance.

Finally, we computed the downward diffuse to direct
ratio by using both forward and adjoint methods and
compared those with the measurements of the MFRSR
at the Maine Quantitative Links site. We chose clear
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sky data in the afternoon of March 6, 1994, with so-
lar zenith angles from 55° to 75°, eliminating the large
early morning variations associated with relative hu-
midity effects on aerosol scattering. Larger solar zenith
angles were avoided because our one-dimensional plane
parallel radiative transfer model does not account for
a spherical Earth. Figure 7 shows the measurements
of the MFRSR and the results of the forward and ad-
joint calculations for the four channels of 415, 500, 610,
and 665 nm. The total optical depths were inferred
from direct normal irradiance by Langley regression
0.326, 0.195, 0.151, and 0.107 for the channels of 415,
500, 610, 665 nm, respectively [Harrison and Michal-
sky, 1994]. The ground was covered with snow; surface
albedos were assumed to be 0.49 for 415 and 500 nm,
and 0.59 for 610 and 665 nm, to yield a best agreement
with the measurements. Despite small fluctuations in
the observed diffuse to direct ratio, which may be due
to sparse clouds or to horizontal inhomogeneities in the
atmospheric aerosols, the diffuse to direct ratios calcu-
lated by both forward and adjoint methods agree well
with the measurements, and the differences between the
two methods are less than 0.05 % everywhere.

The computational time of the forward method is
much longer than that of the adjoint method, depend-
ing on the number data points, that is, computational
timescales linearly with the number of solar zenith an-
gles considered. For this case with 31 data points, the
computational time of the forward method is about 31
times longer than that of the adjoint method.

Summary

In this paper we have described an adjoint discrete
ordinate method for radiative transfer computations
through vertically inhomogeneous atmospheres, and
have demonstrated its speed and accuracy upon syn-
thetic data, and with measurements by a multifilter ro-
tating shadow band radiometer. The advantage of the
adjoint method of radiative transfer is reduced comput-
ing time in certain applications, such as evaluating the
mean intensity and irradiance profiles for varying solar
zenith angles. It allows us to improve the photochemi-
cal modeling, and to invert the optical properties of the
atmosphere from the ground observations, or from the
satellite remote sensing, in a more rigorous manner.
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