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Abstract: 

Given the known shortcomings in representing clouds in Global Climate Models (GCM) 

comparisons with observations are critical.  The International Satellite Cloud Climatology 

Project (ISCCP) diagnostic products provide global descriptions of cloud top pressure and 

column optical depth that extends over multiple decades.  Given the characteristics of the ISCCP 

product, the model output must be converted into what the ISCCP algorithm would diagnose 

from an atmospheric column with similar physical characteristics.  We evaluate one component 

of this so-called ISCCP simulator by comparing ISCCP results with simulated ISCCP 

diagnostics that are derived from data collected at the Atmospheric Radiation Measurement 

(ARM) Southern Great Plains (SGP) Climate Research Facility. We find that were a model to 

simulate the cloud radiative profile with the same accuracy as can be derived from the ARM 

data, the likelihood of that occurrence being classified in the bin with the same cloud top 

pressure and optical depth as ISCCP ranges from 30% to 70% depending on optical depth. The 

ISCCP simulator improved the agreement of cloud-top pressure between ground-based remote 

sensors and satellite observations and we find only minor discrepancies due to the 

parameterization of cloud top pressure in the ISCCP simulator.  The differences seem to be 

primarily due to discrepancies between satellite and ground-based sensors in the visible optical 

depth. The source of the optical depth bias appears to be due to sub-pixel cloud field variability 

in the retrieval of optical depths from satellite sensors.  These comparisons suggest that caution 

should be applied to comparisons between models and ISCCP observations until the differences 

in visible optical depths are fully understood. Simultaneous use of ground-based and satellite 

retrievals in the evaluation of model clouds is encouraged.  



 

1. Introduction 

Clouds play an important role in the earth‘s climate system through their modification of 

the earth’s radiative energy and hydrologic cycles.  Not only do clouds act to modify the energy 

and water cycles, they are themselves sensitive to changes in the climate state.  Among the 

primary feedback processes in the earth’s climate system (water vapor, surface albedo, and lapse 

rate feedbacks - Soden and Held 2006), uncertainties in the representation of cloud feedbacks in 

global climate models (GCM) have been consistently identified as the primary source of 

uncertainty in prediction of anthropogenic climate change (Dufresne and Bony, 2008).  

GCMs in the recent IPCC fourth climate assessment (2007) have resolutions that are 

spatially and temporally much coarser than the spatial and temporal scales important to the 

evolution of cloud systems.  Therefore, the impact of clouds systems (i.e. the radiative and 

hydrologic forcing) must be represented statistically through parameterizations of the dominant 

physical processes that result in the forcing (Randall et al. 2003). This task is difficult given the 

large variety of clouds ranging from deep convection to thin cirrus and the different processes 

involved.  Many studies have shown that shortcomings in the prediction of present day cloud 

forcing and cloud occurrence represent a major component of the cloud uncertainty associated 

with cloud feedbacks in future climates (e.g. Dufresne and Bony, 2008; Williams and Tselioudis, 

2007; Williams and Webb, 2009).  A path forward to improved prediction of cloud feedbacks 

lies in improved representation of clouds in the present climate state.  Comparisons between 

model output and observations is, therefore, quite important. 

The International Satellite Cloud Climatology Project (ISCCP) was initiated in the early 

1980’s with a goal of addressing the cloud feedback problem (Schiffer and Rossow 1983).  This 



level of foresight is clearly a credit to the developers of ISCCP because, more than a quarter 

century later, ISCCP remains a flagship description of the cloudy atmosphere.  By analyzing 

visible and infrared radiances produced by geostationary and polar orbiting meteorological 

satellites and applying assumptions regarding the layering of clouds in the atmosphere, their 

thermodynamic phases, and their properties, ISCCP describes a cloudy satellite pixel with the 

column visible optical depth ( ), and cloud-top pressure (P) of the highest cloud layer in the 

column.  Hereafter we refer to the ISCCP cloud top pressure as P
ISCCP

 and the ISCCP visible 

optical depth as 
ISCCP

.  

 It would seem that the long-term global climatology of ISCCP addresses the needs of the 

GCM community.  However, before comparing statistics derived from ISCCP with statistics 

derived from GCM output, the GCM-simulated atmospheric state must be interpreted with a set 

of equivalent assumptions as are used in calculating P
ISCCP

 and 
ISCCP

 from the observed satellite 

data.  This bridge between models and observations, known as the ISCCP simulator (Klein and 

Jakob, 1999; Webb et al., 2001) has been and continues to be an important tool in model 

development, intercomparison (e. g. Zhang et al., 2005), and validation (e. g. Williams and 

Webb, 2009). 

 There are two components to the ISCCP simulator.  Since a GCM represents clouds 

within a finite spatial grid that is often much coarser than the satellite measurements, it is 

necessary to downscale the model output to a spatial scale that is more similar to that of the 

satellite measurement.  This statistical downscaling technique, known as the Subgrid Cloud 

Overlap Profile Sampler (SCOPS), is based upon that reported in Klein and Jakob (1999).  The 

other component, and the one we address here, is the representation of cloud top pressure and 

visible optical depth from the model in a manner that is similar to what ISCCP would produce 



from satellite measurements.  This component of the ISCCP simulator is known as the ISCCP 

Clouds and Radiances Using SCOPS (ICARUS). 

 The ISCCP simulator has become an important tool for evaluating the skill of GCMs to 

simulate the cloudy atmosphere.  Zhang et al. conducted one such study in 2005 using output 

from ten atmospheric general circulation models.  Hereafter we refer to the Zhang et al. (2005) 

paper as Z05.  They categorized the simulated clouds using what have become the standard nine 

ISCCP cloud types and compared them to the ISCCP climatology and to results from a similar 

algorithm known as the layer bispectral threshold method (LBTM; Minnis et al., 1995 – referred 

to in Z05 as the CERES results).    Z05 show that ISCCP and LBTM diagnose 30 to 40% more 

middle level clouds than produced by the GCMs, and that about half of the models 

underestimated the occurrence of low topped clouds. Zhang et al. also grouped the nine types 

into subgroups to better describe systematic model biases.  The first subgroup consisted of the 

middle and low-level clouds with optically thin (  < 3.6) and optically intermediate (3.6 <  < 

23) thicknesses.  They found that the models simulated only about half of the clouds in this 

subgroup compared to ISCCP and LBTM. Another grouping of the model results combined all 

the optically thick (  > 23) clouds at all three cloud top pressure intervals.  The majority of the 

models significantly overestimated the occurrence frequency of this subgroup by more than a 

factor of two when compared to ISCCP and LBTM diagnostics.   

While the ISCCP simulator has proven to be an important tool, the ISCCP simulator has 

not undergone a thorough validation with measurements. In an initial examination of the ISCCP 

simulator, Mace et al. (2006; hereafter referred to as M06) used cloud properties derived from 

ground based remote sensors at the Atmospheric Radiation Measurement (ARM) Southern Great 

Plains site as input to the ICARUS algorithm and then compared the resulting cloud top pressure 



(hereafter P
Sim

and Sim ) to PISCCP and ISCCP . Comparisons were also made to LBTM-derived 

cloud top pressures and visible optical depths (hereafter PLBTM and LBTM ). Using data from the 

year 2000, the P
Sim

- Sim  statistics compare much better to ISCCP than simply comparing the 

unaltered P and  derived from the ground-based ARM data (hereafter Pobsand obs) to PISCCP and 

ISCCP .  However, the statistics of P
Sim

 and Sim  when compared to PISCCP and ISCCP were in some 

ways similar to the differences found between GCMs and ISCCP in Z05 suggesting that the 

ISCCP simulator should be examined more thoroughly.  Such and examination is conducted 

here.   

Our hypothesis is that if observed cloud property and thermodynamic profiles are 

provided as input to the ISCCP simulator, then the simulator will produce P
Sim

and Sim  similar to 

PISCCP and ISCCP .   Our goal is not to evaluate the validity of ISCCP. Our goal is to evaluate the 

degree to which ICARUS simulates ISCCP when given an observed physical distribution of 

cloud occurrence and cloud properties. 

 

2. Data and Technique  

The simulation of ISCCP with ICARUS is a two-step process.  First the 10.5 μm 

radiance or brightness temperature of the clear and cloudy atmosphere are parameterized using a 

vertical profile of cloud properties and thermodynamics using a simple radiative transfer model 

similar to that reported in Klein and Jakob (1999). Then, P
Sim

and Sim  are derived using ISCCP-

like assumptions (Rossow et al. 1996). To validate the first step in this process (the ICARUS 

parameterization of the IR radiances), we calculate clear and cloudy TOA radiances using the 

more complete Moderate Spectral Resolution Atmospheric Transmittance (MODTRAN) model 



(Berk et al. 1989). We then applied the second component of the ICARUS algorithm to these 

MODTRAN radiances to calculate  P
MODT

and 
MODT

 reported on below. 

To calculate Psim from the parameterized IR radiance, the temperature at cloud-top is 

calculated from the IR brightness temperatures and column visible optical depth assuming, like 

ISCCP, that only a single layer of cloud exists in the vertical column. Then, P
Sim

is set equal to the 

lowest pressure (highest altitude) in the troposphere for which the temperature of the input 

sounding matches the derived cloud-top temperature. Finally, Sim is set equal to obsin all cases 

except for optically very thin clouds for which the single-layer cloud retrieval fails. In this case, a 

nominal value of optical depth is assigned following ISCCP documentation (Rossow et al. 1996). 

So, except for profiles with 
obs

< 0.5 , 
Sim

=
obs

.  

The primary goal of ICARUS is to calculate a value for Psim that the ISCCP algorithm 

would derive from an atmospheric column with similar physical properties as that of the 

simulation.  PISCCP   can differ substantially from Pobs  particularly where multiple cloud layers 

exist in the column and the highest cloud is transmissive to thermal IR radiation.  In such 

situations, P
Sim

 is higher (at lower altitudes) than Pobs and typically results in P
Sim  at middle levels 

of the atmosphere when the true cloud-top pressure is at high levels. PISCCP   can also differ 

substantially from Pobs  when a cloud layer is located beneath a strong temperature inversion. 

When this occurs, the P
Sim

 is lower (at a higher altitude) than the Pobs  and typically results in P
Sim

 

at middle levels of the atmosphere when Pobs is at low levels. 

The area of focus for this study is the ARM SGP site in Oklahoma (Ackerman and 

Stokes, 2004).  Ground-based zenith-pointing cloud radar and lidar data have been collected 

continuously at that location since 1997. The cloud microphysical and radiative property profiles 

are derived using a combination of vertically pointing radar reflectivity, Doppler Velocity, lidar-



derived cloud boundaries, and liquid water paths derived from microwave radiometer 

measurements (M06). Using the derived cloud property profiles and observed thermodynamic 

profiles, P
Sim

 and Sim  are calculated using the ICARUS component of the ISCCP simulator.  The 

derived cloud microphysical and radiative property profiles have been validated against aircraft 

in situ data, surface radiometric fluxes, and TOA radiometric fluxes (M06 and Mace et al. 2008).  

Additionally, the M06 column optical depths compared favorably with optical depths derived 

from Multifilter Rotating Shadowband Radiometer (MFRSR) measurements using a technique 

described by Min and Harrison (1996).   We also use the Min and Harrison optical depths 

(hereafter MFRSR ) below as an additional comparison dataset.  It is important to note that the 

M06 methodology used to derive cloud properties from ground-based data does not use 

radiometric fluxes in either the solar or IR spectra as input.  The common element between the 

M06 and Min and Harrison (1996) methods is that both use liquid water paths derived from the 

microwave radiometer at the SGP site. 

 

As a reminder, our hypothesis is that if accurate observed cloud property and 

thermodynamic profiles are provided as input to the ISCCP simulator, then the simulator will 

produce P
Sim

and Sim  similar to PISCCP and ISCCP . There are at least two significant challenges in 

testing our hypothesis.  First, we assume that the cloud properties input to ICARUS represent a 

realistic version of the actual cloud properties for a given 5-minute period.  Because we use 

active remote sensing observations and soundings, the vertical locations of the cloud layers and 

the thermodynamics in the vertical column are reasonably certain.  The vertical distribution of 

cloud properties is less certain.  However, radiative closure studies at the TOA and surface 

suggest that the cloud radiative properties have minimal bias (M06 and Mace and Benson, 2008).  



So we assume that, while any given profile will have significant uncertainty, statistics derived 

from many profiles will allow meaningful comparisons to emerge from the noise.      

The second challenge in testing our hypothesis is that the ISCCP measurements are 

derived from spatially distributed radiances collected instantaneously, while the ARM data are 

collected as a function of time at a single point.  Clearly, situations that have highly variable 

cloud fields in either space or time are not reasonable candidates for comparison.  Therefore, we 

implement a strict set of criteria that a particular case must satisfy.   We define a case to be the 

union of an interval in time during which the ARM data are averaged centered on the ISCCP 

observation time with a set of ISCCP retrievals that are averaged from within a geographic 

rectangular domain centered on the SGP site.  In order to test the validity of the sampling 

statistics, we use variable time and space intervals as described below. For a case to be used in 

the comparison, that case had to have met all of the following criteria:   

1.   All ISCCP pixels within a 100 km averaging domain reported the presence of cloud. 

2.   The standard deviation of PISCCP  in a 100 km domain must have been less than 100 mb. 

3.   All ARM 5-minute profiles during a 1-hour averaging period had to have contained cloud at 

some level. 

4. All OBS  during a 1-hour averaging period were limited to values between 1 and 100. 

We use the reported daylight PISCCP and ISCCP from the ISCCP D series data set from 

1997 to 2002.  These data are reported at 3-hour intervals and sampled every 30km from the 

native geostationary satellite data.  We average the ISCCP data within 100 km and 250 km 

domains centered on the ARM SGP central facility as well as use the single ISCCP pixel nearest 

the SGP site to create versions of P ISCCP  and  ISCCP .  P ISCCP  and  ISCCP  are compared with similar 

quantities derived from the ground based data that have been averaged during 30 minute, 60 



minute, 90 minute and 120 minute periods centered on the ISCCP nominal measurement time as 

well as the single 5-minute averaged profile nearest the ISCCP measurement time to create 

several versions of P Obs  and  Obs  and P Sim  and  Sim .   The LBTM retrievals are used at the time 

nearest the center of the averaging interval and for the single 0.3° spatial average (18 visible 

GOES pixels) nearest the SGP central facility.  In all of these various permutations, we use the 

set of events that pass 3 homogeneity criteria at the 100 km and 1 hour averaging intervals.  In 

other words, we do not define a new set of cases for each permutation but use the same set of 

cases in all comparisons. 

Comparing ground-based and satellite measurements always raise questions of sampling 

uncertainty – especially when conducted between quantities derived from cloud fields that tend 

to be highly variable in both space and time.   While the criteria listed above that qualifies an 

event for comparison is rather stringent and ensures that only overcast and rather homogenous 

events are used in compiling statistics, we considered various renditions of temporal and spatial 

averaging (Table 1) to quantify the variability in the temporal statistics, the spatial statistics, and 

the reasonableness of comparing the spatially and temporally averaged quantities.   In addition to 

the 5 temporal and 3 spatial averages listed above, we add to them random sampling of the 30 

minute and 60 minute ARM data and random sampling of the 100 km and 250 km ISCCP 

domains.  

In Table 2, we consider the degree to which these various sampling permutations covary 

by examining the correlation coefficients of   and  in the lower diagonal of the matrix,  

and also 
Sim

 and 
ISCCP

  in the upper diagonal.  We make the assumption that the most reasonable 

comparison between spatial and temporal statistics should be for the combination of temporal 

and spatial averaging that presents the strongest correlation between space and time in cloud top 



pressure and optical depth.  Overall, we find only marginal differences in the correlation 

coefficients for the various combinations of temporal and spatial averaging suggesting that our 

initial screening of the events successfully captured fairly homogenous cloud fields.   We find 

that the correlation coefficients tend to rise as the temporal averaging times of the ARM data 

increase.  For the optical depth the improvement seems to reach a maximum at the 1-hour 

averaging period.  For the spatial averaging, we find that ISCCP has the strongest correlation 

with the ARM data for the 250 km domain for cloud top pressure while for optical depth a 

stronger correlation is found for the 100 km averaging domain.   Since the difference in the cloud 

top pressure correlations is only slight and our emphasis later will be on optical depth 

differences, in the following discussion, we will use the 100 km spatial averages of ISCCP with 

the 60-minute temporal averages of the ARM data.  However, we will also present the standard 

deviations of the various sampling permutations where appropriate as a measure of the 

sensitivity of the results to the sampling choice we have made. 

To build further confidence in the temporal-spatial comparison, we consider whether the 

magnitude of the differences in either optical depth or cloud top pressure between the spatial and 

temporal averaging is a function of the variability of either quantity in space or time.  If, for 

instance, we find that the differences between 
Sim

 and 
ISCCP

 are correlated to the magnitude of 

the case by case spatial standard deviation of 
ISCCP

, then any systematic differences we find may 

be as much due to statistical offsets in the temporal- and spatial-averages than to real differences 

in the algorithms.  Figure 1 illustrates one of these relationships. We find only minimal 

correlation (< 0.15) in the magnitude of the differences of optical depth and cloud top pressure 

and the variability of these quantities in either space or time lending further confidence to our 



comparison of temporal and spatial statistics of these carefully selected cases.  We will continue 

to address this topic as we proceed.    

 

3. Results 

In Figure 2 we compare various renditions of P  and in Figure 3 the   quantities are 

compared.  Regression statistics for P  and   are listed in Tables 3 and 4. In the comparison of 

ISCCP with LBTM, a lack of any significant bias suggests that the two satellite algorithms tend 

to produce reasonably similar results while the scatter in the comparisons likely arises from 

differences in the algorithms and from comparing the spatially averaged ISCCP to the 0.3° 

LBTM product nearest the SGP central facility. For both ISCCP and LBTM, the improvement 

relative to observations in the comparison of P Sim  is evident. P Obs  compared to the satellite 

products show two clusters of points in the lower and upper troposphere with fewer points in the 

middle troposphere recorded by the active remote sensors.  ICARUS correctly moves some 

fraction of those points into the middle troposphere as expected.  Interestingly, while the normal 

deviation is slightly larger, the linear correlation coefficient of P Sim  with P ISCCP  and P Sim  with 

P LBTM  is nearly identical to that found comparing P LBTM  with P ISCCP . This suggests that the 

alterations of cloud-top pressure performed by ICARUS are performing as well as could be 

expected.  

We compare the various renditions of   in Figure 3.  As in Figure 2, the comparison 

between LBTM and ISCCP shows minimal bias. The comparison between  
MFRSR

 and  
Obs

 show 

good agreement also with a slight positive bias in 
Obs

 that seems to be associated with higher 

optical depth events.  Comparing the ground-based techniques to the satellite techniques, 



however, reveals a bias with the satellite retrievals of   on average 10% lower than the ground-

based quantities.  

P -   histograms that are derived from the approximately 1000 cases that pass our 

variability criteria are shown in Figure 4 where we simplify the 42 ISCCP bins used by Rossow 

and Schiffer to the 9 ISCCP cloud types used by many others including Z05.  As before, we find 

that ICARUS brings the ground-based observations into closer agreement with ISCCP.  The 

most substantial changes made by ICARUS appear to be in the high and middle cloud categories 

where ICARUS correctly moves cloud top pressures into the middle troposphere. Similarly large 

changes can be seen in the comparisons with LBTM.  However, in comparing the P 
Sim

-  
Sim

 

statistics with the satellites in other categories we find interesting differences.  Specifically, the 

P 
Sim

-  
Sim

 histograms show that the frequency of optically thick clouds are greater than the satellite 

algorithms while the frequency of optically intermediate clouds are less than the satellite 

algorithms in approximately equal proportions. A difference that is common between the two 

satellite algorithms and the surface is that both LBTM and ISCCP diagnose less than half of the 

optically thickest lower tropospheric cloud type (hereafter referred to as stratus) compared to the 

surface results while just the opposite is found in the optically intermediate middle troposphere 

cloud type (hereafter altostratus).  The ISCCP and ICARUS results seem to agree in their 

frequency of optically thick high clouds (hereafter deep clouds). However, LBTM reports 

substantially fewer of these deep layers but diagnoses proportionally more of the optically thick 

midlevel clouds referred to commonly as nimbostratus.   

Examination of the panels in Figure 4 is instructive.  However, one must be cautious not 

to place too much stock in the quantitative agreement in Figure 4 because there is potential for 

compensating errors that adjust the counts upward in a particular category that depend on factors 



unrelated to the agreement between the ground-based and satellite algorithms in that category.  

To illustrate this point we list in Table 5 the fraction of cases that agreement is found between 

ISCCP or LBTM and ICARUS.  Tables 5c and 5f show the fraction of the number of cases in 

Table 5a for which ARM and ISCCP or LBTM agree for a particular type without application of 

the ICARUS algorithm.  Tables 5d and 5g, then, illustrates the effect of the ICARUS cloud top 

pressure corrections.  Table 5b illustrates the agreement among the two satellite algorithms.  We 

find the agreement to range from approximately  to  of cases in most categories with the 

exception of the stratus, cumulus and altocumulus classes.  The small number of cases of 

altocumulus and cumulus make the interpretation of these results problematic.  It is clear, 

however, that LBTM and ISCCP diagnose stratus clouds differently.  40% of the time that 

ISCCP diagnoses stratus, LBTM diagnoses nimbostratus suggesting that under these 

circumstances the interpretation of cloud top pressure is the issue.   

We find that when ISCCP or LBTM diagnoses a high cloud, the ICARUS algorithm has 

little effect and actually acts to reduce the agreement in the cirrostratus and deep categories.  

This can be understood by considering that the role of ICARUS is to move the cloud top pressure 

downward in altitude to higher cloud top pressure values from its physical location to match the 

pressure of the column radiating temperature.  ICARUS would not simulate the cloud top 

pressure to be at lower pressures than it already is physically determined to be.  The decrease in 

agreement in the cirrostratus and the deep categories are due to the presence of thin cirrus layers 

overlying thicker layers where ICARUS adjusts downward the cloud top pressure so that the 

event is counted in the adjacent cloud top pressure bin.  While we also find that ICARUS has 

little influence on the optically thick stratus and stratocumulus agreement statistics, ICARUS 



does seem to successfully improve the altostratus and nimbostratus agreement, perhaps due to 

the upward shift in altitude for cloud layers under inversions.   

The real question is why the overall percentage agreements in Tables 5c and 5f are so 

small.  One could argue, perhaps, that we should not expect the ground-based ICARUS results to 

agree any better than the two satellite algorithms agree.  However, even with that criterion, we 

find in most cases that the agreement between ICARUS and the satellite results are smaller. On 

the other hand, the agreement with ICARUS applied to ARM observations is significantly 

improves the agreement in the middle level bins while slightly decreasing the agreement in the 

the deep cloud category.  We are reasonably certain that the vertical distribution of cloud 

occurrence in the ARM data is as correct as it could be given a continuously operating millimeter 

radar and microwave radiometer and other ancillary data used as input to the algorithms.  We 

have established by comparing with MFRSR above and elsewhere (M06) that the retrieved ARM 

radiative property profile is largely unbiased.  We have also established that the ICARUS 

radiative parameterization is in reasonable agreement with similar quantities calculated from a 

more complicated radiative model, and that the differences in the P MODTRAN -  MFRSR  with P 
Sim

-  Sim  

are much smaller than the differences in any of the ground-based results with either of the 

satellite results.   

To help shed light on this issue and examine more closely the differences between the 

algorithms, we consider the -  statistics from ISCCP and LBTM when the ICARUS algorithm 

diagnoses clouds in each of the nine categories (Figures 5 and 6). We present similar 

distributions in Figure 7 for P 
MODTRAN

-  
Sim

 in order to understand the uncertainty in  due to the 

ICARUS radiative parameterization. The depiction of the statistics in Figures 5-7 is the converse 

approach taken in Table 5 and more closely represents the methodology of a model evaluation 



where the model output would be converted into an ISCCP equivalent using ICARUS.  In other 

words, if a model were to predict the cloud occurrence and properties to within a similar 

uncertainty as the ground-based results, Figures 5 and 6 show the level of agreement that could 

be expected with ISCCP and LBTM.  

Beginning with the high clouds and moving from optically thickest to thinnest, we find 

that when ICARUS simulates a deep cloud, 62% of the time this diagnosis will agree with 

ISCCP (we refer to this as the hit rate: i.e. H
ISCCP

Deep
=0.62). Of the 38% of the time ICARUS places a 

cloud in the deep category in disagreement with ISCCP (we will refer to this as the miss rate: i.e. 

M
ISCCP

Deep
=0.38), ISCCP will report the majority of those in the next lower optical depth category; 

cirrostratus.  A similar pattern is found with LBTM except that H
LBTM

Deep
=0.49. For the cirrostratus 

category, =0.53 and H
LBTM

Cirrostratus
=0.43. ISCCP and LBTM diagnose a larger  in about the 

same fraction of cases although ISCCP places more events into a larger  bin while LBTM 

places more into a smaller  bin. HISCCP
Cirrus  is significantly smaller than HLBTM

Cirrus  with both 

algorithms placing the misses at larger   than at larger .  For the high cloud category, we find 

that the MODTRAN results show that the ICARUS parameterization places the clouds correctly 

more than 90% of the time.  So, the misses in the high cloud category are due primarily to 

differences in interpretation of . 

In the middle  classes, we see significant differences in skill from high to low  with 

the two satellite algorithms showing very similar hit rates.  For the thicker classes at mid levels, 

the hit rate is on the order of 0.5 with the majority of misses being placed at smaller  for the 

nimbostratus category and at larger  for the altostratus.    While there are only 10-12 cases for 

the altocumulus category, the miss rate seems quite high – much higher than for optically thin 

cirrus.   of the misses (80% for LBTM) are being diagnosed to have larger  while ISCCP 



diagnoses many of these events as cirrus.   The comparison between MODTRAN and ICARUS 

shows that more uncertainty exists in the ICARUS parameterization in the middle levels with 

about 15% of the occurrences being placed in the wrong  category for nimbostratus and 

altostratus while this uncertainty rises to 40% being placed in the cirrus category for the 

altocumulus class. 

It is surprising that the agreement is not better between the P 
Sim

-  
Sim

 events and the 

satellite products for the lower tropospheric clouds in the largest  classes.  We find that P 
Sim

-

 
Sim

 have about the same hit rate with the ISCCP and LBTM in the stratus and stratocumulus 

classes being on the order of 30% for stratus and 50% for stratocumulus.  One would expect that 

H stratus
> H stratocumulus given that the larger  would allow for a more accurate determination of  

although uncertainties associated with surface inversions have been shown to cause these classes 

of cloud to be erroneously placed in the mid levels by the satellite algorithms.  We note that the 

version of ICARUS that we are using mimics this satellite error by selecting under inversion 

conditions the lowest pressure (highest altitude) level in the sounding with matching cloud-top 

temperature (Versions of the ISCCP simulator before version 4.0 did not have this feature).    In 

the cumulus category, ISCCP diagnoses a higher  about half the time (100% for LBTM) and a 

smaller  about 60% of the time (40% of the time for LBTM).  The MODTRAN results show 

that the accuracy of ICARUS to correctly diagnose  decreases from 90% in the stratus 

category to 56% in the cumulus category.   

The sources of the discrepancies we illustrate in Figures 5-6 likely arise from a 

combination of issues.  In addition to uncertainties in the derived column radiative properties, the 

discrepancies noted above could arise from errors in the parameterization of  in ICARUS. To 

test this possibility, we bypassed the ICARUS radiative parameterization of  using the 



MODTRAN radiative model as discussed above.  We found that ICARUS tends to accurately 

parameterize estimates of  in high clouds and in stratus more than 90% of the time.  The 

uncertainty in the parameterized  increases as the optical depth of the condensate decreases for 

middle and low clouds where the errors are on the order of 15% for the nimbostratus, altostratus, 

and stratocumulus cloud classes. The errors seemed to be larger for altocumulus and cumulus 

although the number of events in these optically thin categories is small due to our method for 

selecting candidate cases.  

Comparing the hits and misses in Figures 5, 6, and 7 it seems clear that differences in  

are the dominant source of discrepancy between the ground-based and satellite-derived results. 

The two satellite algorithms tend to have similar hit and miss statistics although LBTM does 

seem to have significantly better agreement in the cirrus and stratus categories.  However, we do 

find a large fraction of the optically thin cases being placed by the satellite algorithms into higher 

optical depth categories.  Conversely, a large fraction of the optically thick cases are being 

diagnosed by the satellite algorithms to occur in the optically intermediate categories.  

Similar discrepancies have been reported several times in the literature. Min and Harrison 

(1996) and Barker et al. (1998) find, as we do, that ISCCP and LBTM optical depths are lower 

than optical depths derived from ground-based data.   While there are numerous sources of 

uncertainty, optical depth retrievals from satellite radiances are particularly sensitive to 

assumptions regarding particle phase and single scattering properties as well as instrument 

calibration (Pincus et al., 1995).  In the thicker cloud categories, uncertainties in satellite optical 

depth retrievals are further magnified because of the asymptotic relationship between reflectance 

and optical depth (Min and Harrison; 1996) where small differences in reflectance equate to very 



large differences in optical depth as the optical depth becomes large. This uncertainty likely 

contributes to much of the scatter in our comparisons.    

However, the cause of the bias remains to be determined.   Bias in visible optical depth 

retrievals from satellite radiances are known to occur due to horizontal transport of photons when 

the scale of the satellite retrieval is less than a radiative smoothing scale that depends on cloud 

geometry (Davis et al., 1997).  We have evaluated that source of error and find that the scales of 

the satellite retrievals averaged over several pixels are significantly larger than the radiative 

smoothing scale in most circumstances suggesting that this source of error is not significant.    

Another source of optical depth bias is caused by subpixel variability of optical depth.  A 

satellite radiometer measures pixel-mean radiance and, from this quantity, derives an optical 

depth that equates to an approximation of the logarithmic mean of the optical depth within the 

pixel. Because exp ln( )[ ] , the bias is always negative except when the cloud field is 

perfectly uniform. Therefore, the exact relationship in any given instance between pixel-mean 

radiance and the desired pixel-mean optical depth depends on the variability of the cloud field 

within the pixel (Cahalan et al., 1994).  Presently in ICARUS, each sub-column generated in the 

downscaling technique is treated as homogeneous and of sufficient size such that satellites would 

have no bias in retrieving the true sub-column optical depth. Thus, there is no facility for 

adjusting the model-predicted optical depth to account for any biases that might arise due to 

cloud field variability because there is no way to know in coarse resolution models the 

magnitude of cloud field variability at scales smaller than a satellite pixel. Essentially, it is 

assumed that exp ln( )[ ] = . Kato and Marshak (2009) most recently evaluate this source of 

error and show that it is generally small in clouds of moderate optical depths such as marine 

stratocumulus.  However, many of the cases we consider in this study have optical depths many 



times larger than those considered by Kato and Marshak.   Table 6 shows that the average intra-

event normalized standard deviation in optical depth derived from 15-minutes of MFRSR 20-

second resolution retrievals centered on the ISCCP measurement times ranges from a minimum 

of 25% to nearly 40% in several of the optically thicker cloud categories.  The effect of this 

variability on the optical depth retrieved from the mean radiance and the actual mean optical 

depth is shown in Figure 8 where we assume a gamma distribution of optical depths with mean 

indicated along the abscissa and normalized standard deviations of 0.1, 0.25, 0.5, and 1.0 shown 

in the curves that extend increasingly to the right of the 1:1 line, respectively.    Based on the 

statistics in Table 6 and the results in Figure 8 it would seem that significant bias in comparisons 

of satellite-derived optical depths derived from pixel-mean radiances and optical depths that 

approximate true spatial means are likely in real-world situations. For instance, since Table 6 

shows that a typical value of the intra-event standard deviation is approximately 30%, we show 

in Figure 9 the bias that would be expected from optical depths derived from pixel-mean 

radiances to illustrate that these biases become significant at larger optical depths. Such biases 

should be considered a potential source of uncertainty in comparing ISCCP statistics with model 

results until a means of adjusting the model optical depths to approximate the bias in the ISCCP 

simulator can be developed. 

One could imagine a methodology to simulate the ISCCP optical depths given some 

assumed variance of optical depth within model grid boxes.  Indeed, a preliminary attempt to 

adjust ground-based optical depths by accounting for sub-satellite pixel variability essentially 

eliminated the bias between ARM and ISCCP optical depths (Figure 3c) and significantly 

increased the agreement between ISCCP and ICARUS for the stratocumulus and deep clouds 

(note shown). Developing such a methodology will be the focus of the next phase of this work.    



 

 

4. Summary and Conclusions 

 

The ISCCP simulator has gained wide use across the community although it has not been 

well validated.  The ISCCP simulator is designed to convert cloud property and thermodynamics 

profiles simulated by models into cloud top pressure ( P ) and visible optical depth ( ) that 

would be diagnosed by ISCCP.  This conversion from model output to satellite-like quantities 

enables global comparison of cloud properties that span several decades. Such comparisons of 

recent climate are critical to understanding and improving cloud feedbacks in GCMs (Williams 

and Tselioudis, 2007; Williams and Webb, 2009). 

We find that the ICARUS portion of the ISCCP simulator does indeed facilitate 

comparisons between observed and simulated cloud top pressures by adjusting some portion of 

the simulated high-topped and low-topped clouds into the middle-troposphere (Figure 2 and 

Table 5). However, in comparing -  statistics from a carefully screened set of cases designed 

to minimize differences in sampling between satellite and ground-based measurements the 

following discrepancies were found: 

 

1. The ground-based observations converted to ISCCP-like quantities show 

significantly fewer (23%) middle level clouds than found by ISCCP. 

2. The ground-based observations converted to ISCCP-like quantities show 

significantly more (25%) optically thick cloud than reported by ISCCP. 



3. The ground-based observations converted to ISCCP-like quantities show 

significantly fewer (27%) optically intermediate clouds than diagnosed by 

ISCCP. 

4. The discrepancies seem to be concentrated in the optically thick low cloud 

category where nearly a factor 2.5 more clouds are found in the observations 

converted to ISCCP-like quantities than in ISCCP and in the optically 

intermediate middle cloud categories.  

We note that these discrepancies are nearly identical to several of the main findings reported by 

Zhang et al., (2005; Z05) in comparing GCM statistics with ISCCP – albeit of lesser magnitude.  

For instance, Figure 6b of Z05 shows the discrepancy in middle level clouds (point 1 above) 

while their Figure 8a and 8b show the discrepancies in optically thick and optically intermediate 

clouds (points 2 and 3 above).   Their figures 8e and 8i are similar to our point 4 above.   

Z05 interpreted these discrepancies (and others) to be due to deficiencies in the models.  

However, here we find several very similar discrepancies with ground-based measurements 

when passed through the same satellite simulator algorithm suggesting that there may be 

unaccounted for issues in the comparison of ISCCP cloud statistics and model output that use the 

ISCCP simulator.  This calls into question at least the severity of several of the main conclusions 

in Zhang et al. (2005) and other studies that evaluate the fidelity of models by comparing them to 

ISCCP via the ISCCP simulator.  For example, Williams and Tselioudis (2007) and Williams 

and Webb (2009) define cloud regimes based on -  statistics.  They show that when models 

simulate the stratocumulus regime they tend to create clouds that are too optically thick when 

compared to ISCCP (Points 2 and 4 above).  



A more careful evaluation of the discrepancies (Figure 5) show that were a model to 

predict the actual occurrence of clouds with the same accuracy as a cloud radar and then the 

model made reasonable diagnostic interpretations of the column radiative properties, agreement 

with satellite derived -  after applying ICARUS would be successful in only approximately  

to 2/3 of cases depending on the cloud type.   Here, success is defined by ICARUS placing the 

simulated cloudy column into the same -  bin as ISCCP of the nine bins typically used for 

such comparisons.   

The convolution of uncertainties in simulating  and  when model output is passed 

through the ISCCP simulator contrive to cause uncertainty and potential bias when comparing 

-  statistics from models to similar statistics derived from ISCCP data.  While some 

uncertainty exists in the parameterization of  in ICARUS, the principal problem appears to be 

due to unaccounted for bias in the ISCCP  that may be due to sub-pixel variability in the cloud 

field.   Based on these and earlier findings we recommend that a systematic study of potential 

errors in visible optical depth be undertaken for ISCCP, LBTM, and the ground-based techniques 

so that corrections can be made as appropriate and/or the ISCCP simulator can be modified to 

account for any potential biases in  that do exist.  Finally, we conclude that comparisons of 

optical depth made between ISCCP and similar algorithms with GCM results whether or not they 

have been modified to simulate ISCCP with the ISCCP simulator should be viewed with caution 

until these discrepancies are understood and accounted for, if necessary, in the ISCCP simulator. 

Where available, it would be prudent to use cloud retrievals from ground-based sensors in 

addition to those from satellites in the evaluation of model simulated cloud properties.  
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Figure Captions. 

Figure 1.  The normalized standard deviation during the 1-hour averaging period of ARM optical 

depth compared to the absolute value of the fractional difference between 1-hour averaged ARM 

optical depth and the 100 km averaged ISCCP optical depth.  

 

 Figure 2.  Comparisons of cloud top pressure (mb) between (a)  and , (b)  and 

, (c)  and , (d)  and .  The red line in each plot is a linear regression and 

the black line is 1:1. 

 

Figure 3.  Comparisons of total optical depth. (a) ISCCP- LBTM , (b) ARM - MFRSR , (c) ISCCP- ARM . 

The red line in each plot is a linear regression and the black line is 1:1.  Recall that ARM Sim . 

 

Figure 4. P  -  histograms for the 9 ISCCP cloud  type classes with the numerical fraction of 

the total number of cases (listed in the upper right corner of each plot).  Coverage is between 

1997-2002 and the events meet the criteria listed in Section 2. The fractions in the right-most 

column is a summation of the fractional occurrence in each optical depth class.  The fractions 

across the top are summations of the fractions in each cloud top pressure class. (a) ISCCP (b) 

LBTM, (c) ICARUS applied to ARM events, (d) ARM events before application of ICARUS. In 

(a) and (c), the numbers in parentheses are the standard deviations of the fractions in each box of 

the sampling permutations listed in Table 1.    

 

Figure 5.  The distribution of P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed in each of the 9 cloud class 

bins.  Each histogram is as described in Figure 4.  a) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as 



cirrus ( P 
Sim

<440 hPa and  
Sim

< 3.6), b) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as cirrostratus 

( P 
Sim

<440 hPa and 3.6>  
Sim

<23), c) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as deep clouds 

( P 
Sim

<440 hPa and  
Sim

> 23, d) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as altocumulus (680 

hPa< P 
Sim

>440 hPa and  
Sim

< 3.6), e) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as altostratus (680 

hPa< P 
Sim

>440 hPa and 3.6>  
Sim

<23), (f) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as nimbostratus 

(680 hPa< P 
Sim

>440 hPa and  
Sim

>23), g) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as cumulus 

( P 
Sim

>680 hPa and  
Sim

<3.6), (h) P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed as stratocumulus 

( P 
Sim

>680 hPa and 3.6>  
Sim

<23), (i) P ISCCP -  
ISCCP  when P 

Sim
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Sim
 is diagnosed as stratus ( P 

Sim
>680 

hPa and  
Sim

>23). 

 

Figure 6. As in Figure 5 except for LBTM. 

Figure 7. As in Figure 4 except for P 
MODTRAN

-  
Sim

. 

 

Figure 8. The relationship between the actual spatially averaged optical depth (abscissa) and the 

optical depth derived from a spatially-averaged mean reflectance assuming that the optical depth 

is gamma distributed with the mean value that is the true spatial mean and differing values of 

optical depth standard deviation.  The 1:1 line is shown as a solid line and curves extending 

increasingly to the right of the 1:1 line represent, respectively, normalized standard deviations of 

0.1, 0.25, 0.5, and 1.0. 

 

Figure 9.  The fractional bias in optical depth retrieved from pixel mean radiances with an 

assumed 30% sub-pixel optical depth variability.  



 



Table Captions. 

Table 1.  Sampling permutations of ISCCP and ARM data for examining the variability of the 

temporal and spatial averages and covariance.  

 

Table 2.  Correlation matrix of P
sim

 and P
ISCCP

 (lower diagonal) and  
sim

 and 
ISCCP

  (upper 

diagonal) for the indicated spatial and temporal averaging intervals.   The quantities in 

parentheses show the correlation of the base 10 logarithms of the optical depths. 

 

Table 3.  Statistics of the cloud top pressure comparisons plotted in Figure 2.  All   quantities are 

shown in mb except for number of events.  

 

Table 4.  Statistics of the optical depth comparisons plotted in Figure 3.  

 

Table 5.  Evaluation of the agreement statistics when ISCCP (a-d) and LBTM (e-g) diagnose a 

particular cloud type.  a) number of ISCCP cases, b) the fraction of the ISCCP cases where 

P LBTM -   LBTM  are in the same class as ISCCP.  c)   as in b) except P Obs-   Obs . d) as in b) except  

P Sim -   Sim .  The percentages in parentheses in Table 5d show P Modtran-   Sim . e) as in a) except 

LBTM. f) as in c) except LBTM and g) as in d except LBTM. 

 

Table 6. 

 P  bins derived from 15 minute averages of MFRSR 20-second optical depth retrievals.



 

 

 

Figure 1.  The normalized standard deviation during the 1-hour averaging period of ARM optical 

depth (ordinate) compared to the absolute value of the fractional difference between 1-hour 

averaged ARM optical depth and the 100 km averaged ISCCP optical depth (abscissa).  The 

correlation coefficient of this comparison is 0.14.  



 
 

 

Figure 2.  Comparisons of cloud top pressure (mb) between (a) P ISCCP  and PLBTM , (b) P ISCCP  and 

PObs , (c) P ISCCP  and PSim , (d) P Modtran and PSim. The red line in each plot is a linear regression and 

the black line is 1:1. 

 

 

  

 



 
 

 

 

 

Figure 3.  Comparisons of total optical depth. (a) ISCCP- LBTM , (b) ARM - MFRSR , (c) ISCCP- ARM . 

The red line in each plot is a linear regression and the black line is 1:1.  Recall that ARM Sim .



 

 

Figure 4. P  -  histograms for the 9 ISCCP cloud  type classes with the numerical fraction of 

the total number of cases (listed in the upper right corner of each plot).  Coverage is between 

1997-2002 and the events meet the criteria listed in Section 2. The fractions in the right-most 

column is a summation of the fractional occurrence in each optical depth class.  The fractions 

across the top are summations of the fractions in each cloud top pressure class. (a) ISCCP (b) 

LBTM, (c) ICARUS applied to ARM events, (d) ARM events before application of ICARUS. 

Shown by the color of each box and the top numerical fraction in each box are statistics from the 

100 km ISCCP average and the 1-hour average for the ground-based data.  In (a) and (c), the 

numbers in parentheses are the standard deviations of the fractions in each box of the sampling 

permutations listed in Table 1.    



 

 

 

 
 

 

Figure 5.  The distribution of P ISCCP -  
ISCCP  when P 

Sim
-  

Sim
 is diagnosed in each of the 9 cloud class 

bins.  Each histogram is as described in Figure 4. Shown by the color of each box and the top 

numerical fraction in each box are statistics from the 100 km ISCCP average and the 1-hour 

average for the ground-based data.  The numbers in parentheses are the standard deviations of 

the fractions in each box of the sampling permutations listed in Table 1.   a) P ISCCP -  
ISCCP  when 
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Sim
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Figure 6. As in Figure 5 except for LBTM. 



 

 
 

Figure 7. As in Figure 5 except for P 
MODTRAN

-  
Sim
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Figure 8. The relationship between the actual spatially averaged optical depth (abscissa) and the 

optical depth derived from a spatially-averaged mean reflectance assuming that the optical depth 

is gamma distributed with the mean value that is the true spatial mean and differing values of 

optical depth standard deviation.  The 1:1 line is shown as a solid line and curves extending 

increasingly to the right of the 1:1 line represent, respectively, normalized standard deviations of 

0.1, 0.25, 0.5, and 1.0. 



 

 

 
 

Figure 9.  The fractional bias in optical depth retrieved from pixel mean radiances with an 

assumed 30% sub-pixel optical depth variability.  

 



 

Table 1.  Sampling permutations of ISCCP and ARM data for examining the variability and 

covariance of the temporal and spatial averages.  

 



 

 

Table 2.  Correlation matrix of P
sim

 and P
ISCCP

 (lower diagonal) and  
sim

 and 
ISCCP

  (upper 

diagonal) for the indicated spatial and temporal averaging intervals.   The quantities in 

parentheses show the correlation of the base 10 logarithms of the optical depths. 

 



 

 

 

 

Comparison 

 

Num 

 

Bias 

Linear 

Correlation 

Linear 

Slope 

Normal 

Deviation 

 

PISCCP  - PLBTM  

 

1000 -0.57 0.80 1.06 19.06 

PISCCP  - Pobs  

 

1042 21.94 0.78 0.88 50.17 

PLBTM  - Pobs  

 

919 28.6 0.81 0.84 46.74 

PISCCP  - P
Sim

 

 

1042 -16.90 0.80 1.05 26.57 

PLBTM  - P
Sim

 

 

919 -11.01 0.81 1.00 25.48 

PISCCP  - P
MODT

 

 

900 -1.27 0.75 1.00 17.29 

PLBTM  - P
MODT

 

 

809 4.31 0.74 0.94 24.18 

P
MODT

 - P
Sim

 

 

900 -16.96 0.89 1.06 20.01 

 

 

Table 3.  Statistics of the cloud top pressure comparisons seen in Figure 2.  All   quantities are 

shown in mb except for number of events.  

 



 

 

 

 

Comparison 

 

Num 

 

Bias 

Linear 

Correlation 

Linear 

Slope 

Normal 

Deviation 

 

ISCCP  - LBTM  

 

789 -0.01 0.67 1.02 0.07 

obs - MFRSR  

 

555 0.03 0.79 1.02 0.08 

ISCCP  - obs 

 

891 -0.09 0.59 1.03 0.10 

LBTM  - obs 

 

789 -0.10 0.68 0.98 0.06 

LBTM  - MFRSR  

 

492 -0.09 0.75 1.00 0.04 

ISCCP  - MFRSR  

 

555 -0.05 0.64 1.06 0.06 

 

 

 

   Table 4.  Statistics of the optical depth comparisons seen in Figure 3.  



Table 5.  Evaluation of the agreement statistics when ISCCP (a-d) and LBTM (e-g) diagnose a 

particular cloud type.  a) number of ISCCP cases, b) the fraction of the ISCCP cases where 

P LBTM -   LBTM  are in the same class as ISCCP.  c)   as in b) except P Obs-   Obs . d) as in b) except  

P Sim -   Sim .  The percentages in parentheses in Table 5d show P Modtran-   Sim . e) as in a) except 

LBTM. f) as in c) except LBTM and g) as in d except LBTM. 

 
a.  ISCCP # of Cases  ISCCP  < 3.6 3.6<  ISCCP <23  ISCCP >23 

P ISCCP <440 68 173 225 

680< P ISCCP <440 22 169 145 

P ISCCP > 680 26 152 62 

 

b.  LBTM % Agree  ISCCP  < 3.6 3.6<  ISCCP <23  ISCCP >23 

P ISCCP <440 63 53 57 

680< P ISCCP <440 16 47 73 

P ISCCP > 680 24 49 36 

 

c.  ARM % Agree  ISCCP  < 3.6 3.6<  ISCCP <23  ISCCP >23 

P ISCCP <440 53 47 79 

680< P ISCCP <440 14 18 37 

P ISCCP > 680 8 47 66 

 

d.  ICARUS % Agree  ISCCP  < 3.6 3.6<  ISCCP <23  ISCCP >23 

P ISCCP <440 53 (57) 43 (47) 69 (65) 

680< P ISCCP <440 9 (0) 27 (26) 57 (52) 

P ISCCP > 680 4 (4) 47 (44) 69 (72) 

 

 

e.  LBTM # of Cases  LBTM  < 3.6 3.6<  LBTM <23  LBTM >23 

P LBTM <440 89 161 116 

680< P LBTM <440 16 138 181 

P LBTM > 680 21 116 55 

 

f.  ARM % Agree  LBTM  < 3.6 3.6<  LBTM <23  LBTM >23 

P LBTM <440 50 37 87 

680< P LBTM <440 0 21 30 

P LBTM > 680 10 53 75 

 

g.  ICARUS % Agree  LBTM  < 3.6 3.6<  LBTM <23  LBTM >23 

P LBTM <440 50 34 77 

680< P LBTM <440 0 34 45 

P LBTM > 680 0 51 75 

 



 

 

P  bins derived from 15-minute averages of MFRSR 5-second optical depth retrievals.

 

 

 


